Learning objectives of this tutorial
- Collect (training/validation) sample points in GEE
- Generate texture information from sentinel-2 spectral bands
- Apply the Random Forest classifier to identify commodities
- Determine the accuracy of your product
Prerequisites
- The tutorial of this lesson will be done in Google Earth Engine (GEE). If you are not familiar with GEE, link to the FAQ, and tutorials are provided.
- Image Classification could be useful for a recap of how to select for samples and the Random Forest classification method
Time estimate of this tutorial is 30 – 45 minutes. Note that running time will depend on the observation period and area of interest (aoi)
Introduction
This practical provides a basic workflow to map commodities using the spectral bands and texture information from Sentinel-2 data.
You will learn a series of GEE tools to:
- Collect training and validating dataset for a Random Forest model.
- Generate a cloud-free composite from Sentinel-2 imagery.
- Extract texture features from sentinel-2 cloud-free composite.
- Explore feature importance.
- Train and validate a Random Forest model.
- Generating a commodity map for your area of interest.
We will provide advanced reading material to discuss ways to improve the accuracy of the classification.
The skills and techniques you will lean are also applicable for other regions and other commodity types.
Study Area
The study area is around the district of Bogoso in Ghana, above you see a time lapse of the area in which a mine is being developed. In our analysis we will not be focusing on mining but rather on identifying palm, rubber, cocoa, and native forests.
Set up steps
You will need an active Google Earth Engine (GEE) account for this tutorial, if you haven’t signed up for an account yet, you can see the FAQ here and sign up here.
You will need to create a new script, throughout the tutorial you will be copying the code blocks from this page into your script and running them. If you need an introduction to the GEE environment, please take some time and review the documentation.
1. Imports (Close this accordion after copying the code)
In this step you will import the training polygons which will be used later on in the tutorial.
- Copy the following code into your new script, (Click the code twice to select all, then hold down Ctrl + C to copy.)
- Paste this code into your code editor, the code will be highlighted in orange,
- A pop-up asking whether you would like to convert ‘palm’, ‘cocoa’ … will appear, click “Convert” in the suggestion tooltip.
- The video below can help you with this step.
- Afterwards you can close this accordion item and move on to the next one, Setting Parameters and Import Functions.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 | var geometry = /* color: #d63000 */ /* shown: false */ /* displayProperties: [ { "type": "rectangle" } ] */ ee.Geometry.Polygon( [[[-2.0491730618606963, 5.583386879708488], [-2.0491730618606963, 5.519700230146676], [-1.9899498868118681, 5.519700230146676], [-1.9899498868118681, 5.583386879708488]]], null , false ), palm = /* color: #ca10ff */ /* shown: false */ ee.Geometry({ "type" : "GeometryCollection" , "geometries" : [ { "type" : "Polygon" , "coordinates" : [ [ [ -2.0243250775467314, 5.538377661282055 ], [ -2.0245181965958037, 5.537672863266067 ], [ -2.0230805325638213, 5.5373525002536566 ], [ -2.0222007680069365, 5.537651505737301 ], [ -2.0211064267288603, 5.538527163783441 ], [ -2.0200764584671416, 5.539723182432645 ], [ -2.0206343579422392, 5.540812411595674 ], [ -2.022157852662698, 5.539936756936633 ], [ -2.023037618278536, 5.539520285779195 ], [ -2.0240461278091826, 5.53871938122964 ] ] ], "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.015524319132762, 5.552392449856946 ], [ -2.0152453693952133, 5.552979766946103 ], [ -2.015256098231273, 5.553342835399386 ], [ -2.0164148125257064, 5.552541948807903 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.0083795553740758, 5.5470962101593395 ], [ -2.008347368865897, 5.545868170598702 ], [ -2.007478333145072, 5.546103100103667 ], [ -2.007574892669608, 5.547299103405932 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.0367866023680703, 5.573708325471087 ], [ -2.0373766883513467, 5.5725230539634145 ], [ -2.037441061367704, 5.571999825239415 ], [ -2.036496923794462, 5.5720425378057845 ], [ -2.0362072452208535, 5.573014247851498 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.03066369404741, 5.570114003707728 ], [ -2.0310177456373757, 5.569238392601703 ], [ -2.0305510412687844, 5.56900347232686 ], [ -2.0301433454985207, 5.569921796503551 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.022658084166078, 5.55968826940537 ], [ -2.0227653725266737, 5.559074263064314 ], [ -2.022159193289308, 5.558801964395033 ], [ -2.021885607969789, 5.5594159710201 ], [ -2.0225937111497205, 5.559698947770842 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.030127498506602, 5.560585083943357 ], [ -2.02918336093336, 5.55977352883639 ], [ -2.0286469191303813, 5.559591996619846 ], [ -2.02867910563856, 5.560521013844022 ], [ -2.029751989244517, 5.560809329236114 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.0301596850147807, 5.558566872463949 ], [ -2.029376479982432, 5.558961972610453 ], [ -2.0299665659657085, 5.5594745345675465 ], [ -2.0306853979816997, 5.558876545574227 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.0153272308369585, 5.525922507484706 ], [ -2.015370146181197, 5.52452889943924 ], [ -2.0147532381077715, 5.524085720714665 ], [ -2.014195338632674, 5.525682230469429 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.02152849807939, 5.525959883900534 ], [ -2.0208472169896075, 5.525655533017258 ], [ -2.0200479187031695, 5.527326791201868 ], [ -2.0206165470143267, 5.527727251727653 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -1.9996691251670806, 5.537190980214035 ], [ -1.9997495914375274, 5.536641023154158 ], [ -1.999384811011502, 5.5364007504916595 ], [ -1.9992775226509063, 5.536667720110633 ], [ -1.998735716429898, 5.537164283281198 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.042459590464394, 5.529663865246724 ], [ -2.042878015070717, 5.529044488211974 ], [ -2.042105538874428, 5.528756157302287 ], [ -2.041858775645058, 5.529386213552685 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.048478498246553, 5.551110964960645 ], [ -2.048086895730379, 5.550699841756252 ], [ -2.047657742287996, 5.550956126384862 ], [ -2.048161997582796, 5.551345892377284 ] ] ], "geodesic" : true , "evenOdd" : true } ], "coordinates" : [] }), other_veg = /* color: #b0ef99 */ /* shown: false */ ee.Geometry({ "type" : "GeometryCollection" , "geometries" : [ { "type" : "Polygon" , "coordinates" : [ [ [ -2.0296894955765166, 5.53414886057987 ], [ -2.029303257478372, 5.535857470566376 ], [ -2.0295178341995634, 5.536839919072578 ], [ -2.0301401066910185, 5.536370052599424 ], [ -2.0305692601334013, 5.535942900936078 ], [ -2.030698006166116, 5.534875020427432 ] ] ], "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.030058519271958, 5.538820611004149 ], [ -2.029382602600205, 5.53887400471895 ], [ -2.028427736190903, 5.539375905402289 ], [ -2.0297473830262303, 5.5400700226660025 ], [ -2.030573503402817, 5.539461335263368 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.02675403776561, 5.538649751084337 ], [ -2.026056663421738, 5.538745859795312 ], [ -2.025455848602402, 5.539375905402289 ], [ -2.0263248843232273, 5.539803054584166 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.0341140193024754, 5.5363965312703485 ], [ -2.0332557124177097, 5.5368984340578775 ], [ -2.0330625933686375, 5.53792359587396 ], [ -2.0334059161225437, 5.537592554231914 ], [ -2.0340818327942967, 5.536727573582309 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.028685228256333, 5.536407210057511 ], [ -2.0273655814210056, 5.537250833632723 ], [ -2.0276659888306736, 5.53768866311483 ], [ -2.0285993975678562, 5.537325585030675 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.0320318052176023, 5.543688480705398 ], [ -2.031291515529492, 5.5444359861118615 ], [ -2.0320854493979, 5.544681594824497 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.0111267005778943, 5.5496817201612 ], [ -2.011330548463026, 5.549740452166508 ], [ -2.0114432012416517, 5.5495268812100855 ], [ -2.011282268700758, 5.549340006559738 ], [ -2.0110730563975965, 5.549334667283144 ], [ -2.0108477508403455, 5.549558916858467 ], [ -2.0105795299388562, 5.549788505621047 ], [ -2.010407868561903, 5.550151576039874 ], [ -2.0105044280864393, 5.550322432630204 ], [ -2.010681453881422, 5.550130218962593 ], [ -2.010686818299452, 5.549932665961164 ], [ -2.0108745729304944, 5.549697737981415 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.008426671729293, 5.563390222994177 ], [ -2.008378391967025, 5.563080552259149 ], [ -2.0077722127296593, 5.563497005968472 ], [ -2.0080887133934167, 5.563550397448348 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.0103109602358193, 5.555657949948353 ], [ -2.0102895025637, 5.555417685029285 ], [ -2.0099327687647195, 5.555380310477516 ], [ -2.0101124767687173, 5.555593879312854 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.0038869092777722, 5.535215196746221 ], [ -2.0045789192036145, 5.53462786198225 ], [ -2.0038600871876233, 5.534558449653419 ], [ -2.0033826539829724, 5.5347880442484625 ], [ -2.003640146048402, 5.535145784486331 ] ] ], "geodesic" : true , "evenOdd" : true } ], "coordinates" : [] }), non_veg = /* color: #8e958b */ /* shown: false */ ee.Geometry({ "type" : "GeometryCollection" , "geometries" : [ { "type" : "Polygon" , "coordinates" : [ [ [ -2.034062719545473, 5.535067362136452 ], [ -2.0341056348897113, 5.532611230446625 ], [ -2.032238817415346, 5.532579193878923 ], [ -2.0323246481038226, 5.5333267133396475 ], [ -2.0327323438740863, 5.533679115043428 ], [ -2.033311701021303, 5.533849976399986 ], [ -2.0333546163655414, 5.534618851893559 ], [ -2.0334726335621967, 5.534843107057536 ] ] ], "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.0320111674347996, 5.535317972774499 ], [ -2.0316142005005955, 5.534997608485784 ], [ -2.0312708777466892, 5.535446118441357 ], [ -2.031775133041489, 5.535755803688302 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.026357070831406, 5.54146893344209 ], [ -2.025960103897202, 5.541319431685223 ], [ -2.02575625601207, 5.541693186006434 ], [ -2.0262175959626316, 5.541810651601389 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.0333576363602757, 5.540502510702503 ], [ -2.032923118499863, 5.5409670345371405 ], [ -2.03300358477031, 5.541100518330095 ], [ -2.033518568901169, 5.540539886196976 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.0255371546262158, 5.542215379810178 ], [ -2.025397679774228, 5.542300809253346 ], [ -2.0256229853520424, 5.542514382795242 ], [ -2.02588047735228, 5.542471668108005 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.0200433367698767, 5.577217047624592 ], [ -2.0183803671806433, 5.580698080644219 ], [ -2.019506894966898, 5.580868928358677 ], [ -2.0208479994743445, 5.578114002893625 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.031213464613122, 5.525654425572075 ], [ -2.029539766187829, 5.520870222710879 ], [ -2.0265356920911493, 5.524415662466248 ], [ -2.0262782000257196, 5.5278329337143335 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.0402505148046757, 5.580269935107393 ], [ -2.040840600787952, 5.578860438534898 ], [ -2.039596055805042, 5.579832137292237 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -2.004154763184647, 5.569121485140751 ], [ -2.004173538647751, 5.568526175506947 ], [ -2.0041386699305574, 5.568256550765862 ], [ -2.0036934232340853, 5.568291254947394 ], [ -2.003505668603043, 5.568857199772376 ], [ -2.003680012189011, 5.569364414010883 ], [ -2.003725609742264, 5.569815567360376 ], [ -2.00419499631987, 5.569551282304179 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -1.9959318099335932, 5.540382787638842 ], [ -1.9958835301713251, 5.540009032488383 ], [ -1.9954811988190913, 5.54000369312739 ], [ -1.99551338532727, 5.54045753864056 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -1.995835250409057, 5.54054296834522 ], [ -1.9956743178681635, 5.54066577352401 ], [ -1.9957762418107294, 5.541060885665174 ], [ -1.99601227620404, 5.540767221261155 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -1.9962322173432612, 5.541365228620715 ], [ -1.99613834002774, 5.541520069713336 ], [ -1.9963153658227228, 5.541632195996443 ], [ -1.996411925347259, 5.5414346401500065 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -1.9962933260657234, 5.5380161614648955 ], [ -1.9958749014594002, 5.537701138020443 ], [ -1.995703240082447, 5.537981455500434 ], [ -1.9957407910086555, 5.538227066897418 ], [ -1.9961163002707405, 5.5382671122241955 ] ] ], "geodesic" : true , "evenOdd" : true }, { "type" : "Polygon" , "coordinates" : [ [ [ -1.9948921902882821, 5.545095000597148 ], [ -1.9947902663457162, 5.544625140691052 ], [ -1.9944737656819589, 5.5448066775173 ], [ -1.9945274098622567, 5.545132375800893 ] ] ], "geodesic" : true , "evenOdd" : true } ], "coordinates" : [] }), open_forest = /* color: #56af98 */ /* shown: false */ ee.Geometry.MultiPolygon( [[[[-1.996642493340497, 5.549420123162319], [-1.9966746798486756, 5.548896873897446], [-1.9962133398981141, 5.548806106120566], [-1.9960094920129823, 5.549350712572258]]], [[[-1.9955266943903016, 5.549051713013987], [-1.9946254721612977, 5.5484697312962235], [-1.9942392340631532, 5.548902213177995], [-1.995043896767621, 5.549564283592496], [-1.995494507882123, 5.54938274823022]]], [[[-1.9969858160944032, 5.5513649458561085], [-1.9964869252176332, 5.5511780717883505], [-1.9966049424142884, 5.551519784324517]]], [[[-2.019125004583482, 5.575472628476249], [-2.018577833944444, 5.575216354528605], [-2.0173118312894145, 5.57705298201386], [-2.0168612201749125, 5.577971293600808], [-2.017376204305772, 5.5786653653581], [-2.0178911884366313, 5.577522816028599], [-2.0184920032559672, 5.576337552223378]]], [[[-2.0489453216714493, 5.525323171301932], [-2.0486341854257217, 5.524767863712544], [-2.0474647422952286, 5.526796869687771], [-2.0486341854257217, 5.526775511766332], [-2.04892386399933, 5.52669008007291]]], [[[-2.0477957432040306, 5.53306512424148], [-2.0489973728427024, 5.531164286347765], [-2.0475167934664817, 5.529861461342762], [-2.046433181024465, 5.5313992216991235]]], [[[-2.0471266649030473, 5.550811966294991], [-2.0473466060422685, 5.550048451157162], [-2.0471159360669877, 5.549658684307021], [-2.046536578919771, 5.5498135232235315], [-2.0465741298459794, 5.550721198812898]]], [[[-2.0022357567245885, 5.549038257387021], [-2.00245033344578, 5.548691204130303], [-2.002300129740946, 5.548365507811313], [-2.0019085272247716, 5.548376186382008], [-2.0020587309296056, 5.548984864591591]]], [[[-2.000936110232563, 5.548114098625168], [-2.0010970427734565, 5.5477456876610365], [-2.0009146525604438, 5.547494740930531], [-2.0006249739868354, 5.547831116310885], [-2.0007751776916693, 5.548140795062907]]], [[[-2.0096433289664906, 5.54735924224761], [-2.010083211244933, 5.546451561484295], [-2.0097935326713245, 5.545442432408282], [-2.009428752245299, 5.545629308293295], [-2.009187353433959, 5.545501164835664], [-2.0087957509177845, 5.5459443275083595], [-2.008779657663695, 5.546553008227161], [-2.009085429491393, 5.546782598159753], [-2.00941265899121, 5.5472097419826625]]], [[[-2.0072433080012653, 5.547263134938776], [-2.007103833132491, 5.546099167399875], [-2.0070823754603717, 5.545688040702089], [-2.0075115289027545, 5.545554557946389], [-2.0074417914683673, 5.544972572778793], [-2.0069697226817462, 5.544801714638959], [-2.0065352048213336, 5.545426414472524], [-2.006347450190291, 5.545693380011685], [-2.006256255083785, 5.546195274898321], [-2.0065352048213336, 5.547124313242819], [-2.0065137471492145, 5.547476706714917]]], [[[-2.0400396439753776, 5.5572388161277155], [-2.042131767006994, 5.555124487151164], [-2.040833577843786, 5.553811036541244], [-2.0385697934352165, 5.555946727099492]]], [[[-2.0438457472659555, 5.544740919525623], [-2.0444894774295297, 5.543085728565231], [-2.0439691288806405, 5.542866815864929], [-2.043502424512049, 5.543416767128601], [-2.043303941044947, 5.544634133152117]]]]), cocoa = /* color: #ffe652 */ /* shown: false */ ee.Geometry.MultiPolygon( [[[[-2.0033055049345827, 5.523989285733384], [-2.0026295882628298, 5.5237810449794695], [-2.0023881894514894, 5.523284470578646], [-2.001653264181409, 5.523439316404198], [-2.0020126801894045, 5.524475180541169], [-2.0025598508284426, 5.525217370741972], [-2.002447198049817, 5.525916844108751], [-2.0028656226561403, 5.526151781542775], [-2.0037883025572634, 5.526231873828539], [-2.0051401359007692, 5.526237213313867], [-2.0054620009825563, 5.525890146667152], [-2.004142354147229, 5.525527061342146], [-2.0034664374754763, 5.525334839609374], [-2.0034664374754763, 5.524859624502283], [-2.0034610730574465, 5.524453822536007]]], [[[-1.999802539961133, 5.525249407708121], [-1.9995343190596437, 5.524897000985195], [-1.9984453421995974, 5.524811569020777], [-1.9982146722243166, 5.5254362899761125], [-1.9984507066176271, 5.525665888110338], [-1.9989227754042482, 5.525414932005606], [-1.9995986920760012, 5.5254523084534695]]], [[[-2.000777557223421, 5.526046292557318], [-2.000707819789034, 5.525613793950027], [-2.000777557223421, 5.525277405926001], [-2.000450327723604, 5.5250958631035045], [-1.9999889877730426, 5.52554438056389], [-1.9998387840682086, 5.525934163319081], [-2.0005415228301104, 5.526099687425199]]], [[[-2.0488059292793803, 5.547473676097105], [-2.048462606525474, 5.546774228238605], [-2.047888613796287, 5.54657133481151], [-2.0476472149849467, 5.546480566676806], [-2.047486282444053, 5.5461281726097145], [-2.0470839510918193, 5.545866546575295], [-2.0468050013542705, 5.545962654111627], [-2.046767450428062, 5.546523281094868], [-2.0472824345589213, 5.54657133481151], [-2.047593570804649, 5.54698246089386], [-2.04806027517324, 5.546993139489578], [-2.048194385623985, 5.547393586689692], [-2.0484035979271464, 5.547585801249206]]], [[[-2.029500642850699, 5.54297476288136], [-2.0276874695566316, 5.544886241418673], [-2.028030792310538, 5.545366779742046], [-2.02972594840795, 5.5436154826337845]]], [[[-2.027006188466849, 5.54622640843332], [-2.0268398915079255, 5.546418623373089], [-2.0248121414926668, 5.548880036927153], [-2.024935523107352, 5.5489708046926465], [-2.0272368584421296, 5.5463865875541405]]]]); |
2. Setting parameters and import functions
Set parameters for the processing tool to generate Sentinel-2(L2A) cloud free mosaic. Read more about Sentinel-s (L2A) data.
1 2 3 4 5 6 | // Import functions to process Sentinel-2 imagery. var img_process = require( 'users/gouyaqing/MiniMOOC:img_preprocess' ); // Change location to the area of your interest (shown in geometry). var aoi = geometry; Map.centerObject(aoi, 15); // zoom to aoi with scale of 15. |
You can change the map background to satellite view for best visualization effect. To switch from the default Map view, use the buttons in the upper right of the map to select Satellite view.
3. Generate a Sentinel-2 cloud-free composite
Set parameters for the processing tool to generate Sentinel-2 cloud free mosaic.
1 2 3 4 5 6 7 8 9 | // First select a date range of interest. var s2_start = ee.Date( '2019-01-01' ); var s2_end = ee.Date( '2019-12-31' ); // The processing tool provides an option to save the cloud free mosaic as an GEE asset or to Google Drive. var SAVE_s2_DRIVE = false ; // set to true to download the mosaic to google drive var SAVE_s2_ASSET = false ; // set to true to save the mosaic as a GEE asset var SAVE_s2_ASSET_id = '' ; // define an id if you want to save this asset. var s2_composite = img_process.s2_preprocess(s2_start, s2_end, aoi, SAVE_s2_DRIVE, SAVE_s2_ASSET,SAVE_s2_ASSET_id); |
Display the cloud free mosaic that you’ve generated. Different band combination for visualization will emphasize different land features.
Change the bands
to the different combinations in order to highlight some of the different properties. The code below shows the possible combinations of bands to highlight specific characteristics.
1 2 3 4 | // ['B11', 'B8', 'B2'] to highlight dense vegetation such as agriculture // ['B4', 'B3', 'B2'] for a natural coloured result // ['B8', 'B4', 'B3'] to emphasize plant density and health Map.addLayer(s2_composite, {bands: ['B11', 'B8', 'B2'], min: 225, max: 4000}, 'S2 cloud free mosaic'); |
4. Generate texture information from Sentinel-2 cloud-free composite
Due to the similarity of the spectral characteristics of their canopies, some commodities are more difficult to differentiate from natural forest than others (e.g. shaded cocoa). Texture features have proved effective to improve segregating accuracies. Please refer to these two papers for more information on using texture in commodity mapping:
- Numbisi, F. N., Van Coillie, F. and De Wulf, R. (2019). “Delineation of cocoa agroforests using multiseason Sentinel-1 SAR images: a low grey level range reduces uncertainties in GLCM texture-based mapping.” ISPRS International Journal of Geo-Information 8(4): 179.
- Ashiagbor, G., Forkuo, E. K., Asante, W. A., Acheampong, E., Quaye-Ballard, J. A., Boamah, P., Mohammed, Y. and Foli, E. (2020). “Pixel-based and object-oriented approaches in segregating cocoa from forest in the Juabeso-Bia landscape of Ghana.” Remote Sensing Applications: Society and Environment 19: 100349.
GEE provides the image.glcm()
tool for estimating spatial texture. GLCM computes texture metrics from the Gray Level Co-occurrence Matrix (GLCM) around each pixel of every band. GLCM outputs many other measures of texture. (reference:https://developers.google.com/earth-engine/guides/image_texture).
Sentinel-2 includes a multispectral sensor, however, image.glcm()
works on greyscale image. We can either apply image.glcm()
on one band (e.g. NIR band), or convert several bands to one grayscale band.
In this tutorial, we will calculate the Luminance from NIR, Green and Blue bands of Sentinel-2 using this equation:
Luminance is shown to performed particularly well for texture recognition and moderately well for object detection and so it is a good bet for GLCM analysis. If you’re eager to learn more, this paper (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3254613/) assessed the performance of different RGB to Grayscale conversions.
1 2 3 4 5 6 7 8 9 10 11 | // Step 1: Convert the cloud free mosaic to a greyscale image using NIR (B8), green (B4) and blue (B3) bands var s2_grayscale = s2_composite.expression( '(0.3 * R) + (0.59 * G) + (0.11 * B)' , { 'R' : s2_composite.select( 'B8' ), 'G' : s2_composite.select( 'B4' ), 'B' : s2_composite.select( 'B3' ) }); var s2_grayscale_reduced = s2_grayscale.toUint16(); // Optionally visualize the results on the map. //Map.addLayer(s2_grayscale_reduced,{min:900, max:2200},'s2 greyscale reuced'); |
Step 2: apply glcm tool on the reduced grayscale image.
We use kernel size 5 for the analysis and select (CONTRAST layer) from the output layers to represent texture. Many measures of texture are output by image.glcm(). For a complete list of input parameters and output bands. Please note, try different kernel sizes to see if it gives better glcm results.
1 2 3 4 5 | var s2_glcm_k5 = s2_grayscale_reduced.glcmTexture({ size: 5, }); print( 'All available texture information from glcm:' , s2_glcm_k5.bandNames()); |
Display the information. The texture band will be used in the following step as an input band for the classification.
5. Select bands as input features
In this tutorial, we will compare the use of 2 different sets of input features:
- Sentinel-2 spectral bands only
- Sentinel-2 spectral bands and texture information
Step 0: make a list of band names that we will use as input features in the Random Forest model. All spectral bands from Sentinel-2 are expected to add some information to the classification here.
1 | var s2_bands_selected = ee.List([ 'B2' , 'B3' , 'B4' , 'B5' , 'B6' , 'B7' , 'B8' , 'B11' , 'B12' ]); |
We will use local contrast (constant_contrast
layer)
and Difference entropy (constant_dent
) from glcm
tool to represent spatial texture. Reference for choosing these two indices: Hall-Beyer, M., 2017. Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales. International Journal of Remote Sensing, 38(5), pp.1312-1338.
1 2 3 | var texture_bands_selected = ee.List([ 'constant_contrast' , 'constant_dent' ]); Map.addLayer(s2_glcm_k5.select( 'constant_dent' ),{min:1,max:4.5}, 's2 texture dent' ); //Map.addLayer(s2_glcm_k5.select('constant_contrast'),{min:1000, max:20000},'s2 texture contrast'); |
We can choose whether or not to include the texture information. This way you can assess how much added value this information has towards the end result.
Scenario 1: Sentinel-2 spectral bands only
Make sure the script between Step 2 (Scenario 2) and step 3 are commented out with the //
at the beginning of the line to run scenario 1.
1 2 3 4 5 | // Step 1 (Scenario 1): Sentinel-2 spectral bands only. var bands_to_use = s2_bands_selected.getInfo(); var input_features = s2_composite .select(s2_bands_selected); |
Scenario 2: Sentinel-2 spectral bands and texture information
Comment the two lines of code under ‘Step2 (Scenario 1)’ and uncomment script below to run scenario 2.
1 2 3 4 5 6 7 8 9 | // Step 2 (Scenario 2): Sentinel-2 spectral bands and texture information. // Comment the two lines of code under 'Step 1 (Scenario 1)' and uncomment script below to run scenario 2. var bands_to_use = s2_bands_selected.cat(texture_bands_selected).getInfo(); // merge two band name list var input_features = s2_composite .addBands(s2_glcm_k5) .select(bands_to_use); // step 3: show information of selected print( 'Selected features' , input_features); |
6. Generate training and validation points from geometries (polygons)
A quality training dataset is the key component on which a robust machine-learning model depends. The amount of training data needed depends both on the complexity of your problem and on the complexity of your chosen algorithm. We will show how to collect training data interactively (using opportunity sampling) by drawing polygons using the ‘Geometry drawing tools’ in GEE’s Map Window. This method takes advantage of the very-high resolution satellite imagery that is freely available in GEE as basemap. However, errors may be introduced due to the unknown acquisition date of the background imagery in GEE. A simple cross-validation is used in order to obtain a quick accuracy estimation. A second validation stage using stratified random samples is recommended for improved accuracy assessment. After all, it is important that the date of the imagery that you want to classify is in line with the date of the training data, because you want the land use to be equal in these two sets of imagery. To confirm that these dates are in line, you can use the 3m-resolution Planet Scope data and collect training and/or validation samples for a pre-defined period, Planet is just one option, other data sources can also be used. Find more information on the developer site here . You can also use data from field work or from other high resolution images.
Step 1. Draw polygons for each land use class and save the polygons for each class as a separate geometry layer.
A few examples have been given in this tutorial. You can find them under ‘Geometry imports’ in the upper left of the map. Click on each layer to turn on/off the example layers. The national land use map of Ghana was used as reference for each strata.
Tips for drawing polygons: avoid ambiguous areas in which the land use isn’t clear; avoid edges (edge pixels in your imagery are likely to contain two different types of land use, which confuses the classifier.
Step 2: Merge the geometries of each class (each geometry contains training and validation areas for one strata) as one FeatureCollection.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | // Step 2: Merge the geometries of each class (each geometry contains training and validation areas for one strata) as one FeatureCollection. var polygons = ee.FeatureCollection([ ee.Feature(palm, { 'class' : 1}), ee.Feature(cocoa, { 'class' : 2}), ee.Feature(open_forest, { 'class' :3}), ee.Feature(other_veg, { 'class' : 4}), ee.Feature(non_veg, { 'class' : 5}) ]); // Set the names and colour for visulisation. var class_name_list = [ 'Palm' , 'Cocoa' , 'Open forest' , 'Other vegetation' , 'Non vegetation' ]; // set class names var colour_palette = [ 'purple' , 'orange' , 'teal' , 'lightgreen' , 'grey' ]; // set colour to each class var class_number = ee.List(class_name_list).length().getInfo(); // View training and validation areas (different colours for each strata) var fills = ee.Image().byte().paint({ featureCollection: polygons, color: 'class' , }); Map.addLayer(fills, {palette: colour_palette,min:1, max: class_number}, 'Training and Validation polygons' ); |
Step 3: Generate training and validation points within each strata using the sampleRegions
function. Each pixel of the input feature image (at 10m scale in this example) that intersects with the training geometry (polygon) is converted to a Feature collection
. Each output feature will have one property per band of the input image, as well as the ‘class
‘ properties copied from the input feature. Note: In this example we are doing a cross validation…
1 2 3 4 5 6 7 8 9 10 | var all_points = input_features .sampleRegions({ collection: polygons, properties: [ 'class' ], scale: 10, // tileScale: 8 }) .filter(ee.Filter.neq( 'B2' , null )) // Remove null pixels. .randomColumn() ; // add a ID column, which will be used to separate the points to training and validation dataset later. |
7. Train a Random Forest model
Some technical details for those interested: Random Forest is an ‘ensemble classifier’, where a group of typically deep, Classification and Regression Tree (CART) classifier probabilities are averaged to predict the most likely class label of a pixel or object. Each tree within the ensemble employs random feature selection and bootstrap sampling with replacement for every split of the CART tree, followed by the averaging of probabilities across all trees, aims to mitigate against high variance. Take a look at some animations to explain this here.
Step 1: Randomly split the sample into training (70%) and validation dataset (30%).
You can uncomment the last line to view the selected training samples.
1 2 3 4 | //Step 1: Randomly split the sample into training (70%) and validation dataset (30%) var training = all_points.filter(ee.Filter.greaterThan( 'random' ,0.3)); var validation = all_points.filter(ee.Filter.lessThanOrEquals( 'random' ,0.3)); //print(training) |
Step 2: Train a Random Forest classifier. You can tune the model by specifying the parameters (see the Google developers document here. In this example we are using 100 training trees.
1 2 3 4 5 6 | //Step 2: train a Random Forest classifier var trainedRf = ee.Classifier.smileRandomForest({numberOfTrees: 100}).train({ features: training, classProperty: 'class' , inputProperties: bands_to_use // a list of selected band names }); |
Step 3: Validate using an error matrix (note error matrix and confusion matrix are the same thing)
1 2 3 | //Step 3: Validate using an error matrix //Classify the validation data var validatedRf = validation.classify(trainedRf); |
Calculate the validation error matrix and accuracy for both classifiers by using the “errorMatrix
” function to generate metrics on the re-substitution accuracy.
1 2 3 4 5 6 | var validationAccuracyRf = validatedRf.errorMatrix( 'class' , 'classification' ); // Print validation accuracy results. print( '##### VALIDATION ACCURACY #####' ); print( 'RF: overall accuracy: ' , validationAccuracyRf.accuracy()); print( 'RF: error matrix: ' , validationAccuracyRf); |
From the error matrix we can see that the model has a lower accuracy for class 2 (cocoa). Cocoa is confused with Open Forest (class 3), Palm (class 1) and Other Vegetation.
Step 4: Classify the image and add the map to viewer
1 2 3 4 5 6 | //Step 4: Classify the image and add the map to the viewer var classifiedRf = input_features.select(bands_to_use).classify(trainedRf); var classVis = {min: 1, max: class_number, palette: colour_palette}; Map.addLayer(classifiedRf.clip(aoi), classVis, 'Classes (RF)' ); img_process.addLegend( 'classes' , colour_palette, class_name_list,class_number); |
8. Feature importance
Feature importance is used to assess how useful each feature of the model input is in determining the output. This provides us an indication as to which pieces of information we should include in the model, and which ones we could leave out. Again, some technical details for those interested: The Random Forest classifier in Google Earth Engine is based on SMILE, where feature importance is calculated by summing up the decreases for each individual variable (GINI, information gain, etc.) over all trees in the forest. It is a fast way to calculate variable importance and is often very consistent with the permutation importance measure (more information refer to the GitHub page)
We use the classifer.explain()
function in GEE to explore the variable importance of the trained Random Forest model.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | var dict_featImportance = trainedRf.explain(); var variable_importance = ee.Feature( null , ee.Dictionary(dict_featImportance).get( 'importance' )); print( 'Variable Importance' , variable_importance); // Plot the variable importance as a bar chart var chart = ui.Chart.feature.byProperty(variable_importance) .setChartType( 'ColumnChart' ) .setOptions({ title: 'Random Forest Variable Importance' , legend: {position: 'none' }, hAxis: {title: 'Bands' }, vAxis: {title: 'Importance' } }); print(chart); |
Discussion
Potential ways to improve classification accuracies:
- Compare the overall accuracy and confusion matrix between using texture information (Scenario 2) and not using it (Scenario 1)
- Will the accuracy further improve if we introduce other dataset?
- Explore texture information:
- kernel size
- Different RGB to greyscale transformation
- Improve the quality of the training dataset:
- import ground truth data from field work
- Using very high resolution satellite data with a matching date for sentinel-2 mosaics
- Will the accuracy further improve if we introduce other dataset?
- Sentinel-1 (Try this Analysis Ready data processing chain)
- Question: Using the knowledge you have gathered in this tutorial:
- What do you think can be used to improve the classification results?
- What is important when trying to achieve the most accurate classification?
- The classification accuracy for shaded cocoa remains the lowest among all classes.
- What data or method could improve the classification accuracy for shaded cocoa?