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List of Abbreviations 

The list includes all terms that are introduced in the MOOC 

 

ALIA: Average leaf inclination angle 

ALG: Atmospheric Look-up Generator 

ANN: Artificial neural network 
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Models Operator (Toolbox) 
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EnMAP-Box Agri-tools) 
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phenological development stages of a 
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EnMAP: Germany’s Environmental 

Mapping and Analysis Program 

EM: Endmember 

EWT: Leaf water content (also referred 

to as CW) 

fAPAR: Fraction of absorbed 

photosynthetically active radiation 
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1 Welcome  

Hi there, welcome to the Massive Open Online Course (MOOC) ‚Beyond the Visible – 

Imaging Spectroscopy for Agricultural Applications‘! 

This course is structured into six lessons that usually contain several topics and 

are accompanied and completed by a number of short exercises and quizzes. 

The first lesson is accessible to everyone – here, you can meet your instructors and 

they will explain the benefits of hyperspectral over other types of remote sensing 

data, as well as the challenges and opportunities for applications in an agricultural 

context. Plus, you will get a glimpse of EnMAP, the German hyperspectral satellite 

mission that triggered the creation of this series of MOOCs! This lesson is not 

compulsory to pass the MOOC, but we hope that you find some valuable information 

relating to your area(s) of interest. 

The second lesson is a quiz on the basics of hyperspectral remote sensing that you 

need to pass to access the rest of the course – this is not to discourage you but to 

ensure you have sufficient background knowledge to enjoy this MOOC. Don’t worry, 

you have unlimited attempts to pass … 

The third to fifth lesson comprise the actual content and will introduce you to the 

(theoretical) background of vegetation reflectance including which “traits” or variables 

can be retrieved from hyperspectral imagery, followed by some methodological 

considerations for agricultural applications. In the final lesson, you’ll get the chance to 

participate in expert-led, hands-on training exercises. 

These „core“ thematic lessons (3-5) contain a lot of interactive content and you are 

requested to complete a short graded final quiz at the end of each lesson. In each 

final quiz (3) you need at least 50 % to pass to the next lesson. The course is 

completed by a final assessment which includes a total of 15 questions. Here, you 

need at least 70 % to pass. If you have successfully done this, you will receive 

your certificate of completion as well as a diploma supplement document! You 

have unlimited attempts to pass for all quizzes. 

 

  

This offline version of the MOOC on agricultural applications enables everyone 

to access the content of such – however, in order to successfully complete the 

course, one must necessarily pass each of the quizzes as well as the final exam.  

For acquiring the certificate of completion, you need to pass the lesson 

quizzes, as well as the final assessment online. 
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We use the sixth lesson to say goodbye – by then, you should have learned … 

• the benefits of imaging spectroscopy for agricultural applications 

• the physical and chemical factors controlling leaf and canopy reflectance 

• which biophysical and biochemical variables can be retrieved as “vegetation 

traits” 

• some basics of campaign- and sampling design 

• how reference data are acquired in an agricultural context 

• where you can get imaging spectroscopy data from and what software you 

can use 

• which methods to apply in an agricultural context 

• and finally, how to analyze an imaging spectroscopy dataset yourself! 

 

VIDEO: Agri-01: Imaging Spectroscopy for Agricultural Applications - Welcome! 

  

URL of the video https://youtu.be/Z04I71-_DJo  

How to get through the course smoothly 

This course was designed to be taken from a desktop PC or laptop, though 

most content should work on a tablet or even smart phone as well. For the 

best learning experience, we recommend to participate using Google Chrome, 

Microsoft Edge or Mozilla Firefox on a desktop PC or laptop. During beta-

testing, we observed some issues with Safari – if the content is not displayed 

properly, try re-loading. If you prefer, you can use the offline version of the 

course in PDF format, which you will find under the resource section on EO-

College. To complete the course and get the certificate, however, you still need 

to answer the quizzes in the online version of the course. 

 

https://youtu.be/Z04I71-_DJo
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1.1 Hyperspectral remote sensing for agricultural 

monitoring 

In the face of a growing world population, global agriculture faces numerous 

challenges, including the production of sufficient food, fibre and energy from limited 

resources. Spaceborne imaging spectroscopy offers highly relevant data for 

monitoring vegetation status and dynamics, which are needed for various 

applications in agriculture, ranging from the field to global scale. 

“Humankind is facing an unprecedented challenge to produce enough food for the 

coming decades due to population growth and increase in the average demand per 

capita, changes in climate conditions, and limitations in arable land area, as well as 

pressure on the water and resources.“ (Ninomiya et al., 2019) 

To meet this increasing food demand, more land needs to be converted to arable 

land or the use of existing land has to be intensified and/or genetics of crops 

improved. However, the conversion to arable land comes at the expense of other 

types of land use, such as forests, which benefit biodiversity and act as carbon sinks. 

Agriculture causes almost 12 % of global greenhouse gas emissions (according to 

IPCC 2014), significantly contributing to climate change. 

Climate change leads to global warming, increasing variability in seasonality, changes 

in rainfall patterns and increases in extreme weather events such as heatwaves, 

drought, storms and floods. Consequently, the agricultural sector is expected to face 

changes in crop and livestock viability, new pests, pathogens, and weed problems due 

to climate change. Climate 

adaptation is currently one of the 

biggest challenges to sustainability! 

(Minoli et al., 2019) 

In order to ensure a sustainable 

food supply for a growing world 

population, informed agricultural 

management is necessary. Major 

impacts on agricultural production 

come from managing the most 

important production factors, 

Figure 1 Relationship between Water use efficiency and 

agricultural yield. 

Berger et al. (2021): Spaceborne Imaging Spectroscopy of 

Agricultural Systems (HYPERedu slide collection) 
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namely nutrient and water supply. The use efficiency of production factors, such 

as water use efficiency, increases with higher yield levels that are associated with 

mechanized and information-driven cultivation. 

If properly implemented, agriculture can positively contribute to ecosystem services 

(Power 2010), including but not limited to, the regulation of soil and water quality, 

carbon sequestration, support for biodiversity and cultural services. However, if not 

properly implemented, agriculture can be associated with severe environmental 

problems, such as the loss of wildlife habitat, nutrient runoff, sedimentation of 

waterways, greenhouse gas emissions or pesticide poisoning of humans and non-

target species. 

Some of the negative impacts of agriculture can be traced back to a limited 

understanding of land surface heterogeneity. Thanks to its extensive spatial sampling 

capabilities, remote sensing can contribute to addressing existing knowledge-gaps 

and assist in implementing agricultural practices that fully take the natural 

heterogeneity of the land surface into account. The practice of optimizing agricultural 

production based on measurements of temporal and spatial land surface dynamics 

is summarized under the term precision or smart farming. Smart farming can 

improve yield of existing bio-productive surfaces, while simultaneously increasing the 

use efficiency of production factors, such as water and nutrients. 

Smart farming is highly dependent on information derived from satellite (and 

drone) technology: “Remote sensing data can greatly contribute to the monitoring 

task by providing timely, synoptic, cost efficient and repetitive information about the 

status of the Earth’s surface” (Atzberger, 2013). 

Today, a new generation of spaceborne imaging spectroscopy missions is 

underway, which will enable the regular estimation of more challenging traits, such as 

pigments, nitrogen content and non-photosynthetic vegetation. Hence, these 

missions will provide enhanced understanding of underlying physiological 

processes of functional traits. 
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In summary, there is a range of agricultural applications that can be supported by 

spaceborne hyperspectral remote sensing, e.g., monitoring vegetation status and 

dynamics, nutrient and water status, crop evapotranspiration, pest and disease 

infestation, crop yields, as well as production forecasting and precision agriculture. 

While a few of these applications are already operational, some are still under 

development. However, for all these applications, crop characteristics or functional 

vegetation traits need to be derived from hyperspectral data. 

For our MOOC “Beyond the Visible – Introduction to Hyperspectral Remote Sensing” 

PD Dr. Tobias B. Hank Ludwig-Maximilians-Universität München, Department of 

Geography) summarized the advantages and current challenges of hyperspectral 

remote sensing in the context of agricultural applications in an interview. 

Why should we prefer hyperspectral sensors over 

multispectral systems? 

Ustin & Middleton (2021) elaborated on this issue specifically for ecological 

applications: 

“There is an unprecedented array of new satellite technologies with 

capabilities for advancing our understanding of ecological processes and the 

changing composition of the Earth’s biosphere at scales from local plots to the 

whole planet.” 

“Hyperspectral (or spectroscopy-based) imagery allows identification of 

detailed chemical composition because the large number of bands, especially 

when they are narrow and contiguous or overlapping, can directly describe 

relevant absorption or reflectance features…” 

„High-frequency monitoring of agriculture will increase the likelihood of 

obtaining timely data throughout a growing season, especially at critical 

developmental stages in a crop life cycle or when affected by environmental 

stresses (e.g., drought or disease).“ 
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Video: Basic-04: Expert interview: application field "agriculture"

 

URL of the Video: https://youtu.be/DaZF3jRnMfs 

 

Let us and your fellow students know who you are, what question(s) you are 

interested in and for which research question you would like to use hyperspectral 

data in the discussion forum of this topic. 

 

  

https://youtu.be/DaZF3jRnMfs
https://eo-college.org/forums/discussion/agri-1-1-hyperspectral-remote-sensing-for-agricultural-monitoring/
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1.2 EnMAP – The German Spaceborne Imaging 

Spectroscopy Mission 

The Environmental Mapping and Analysis Program (EnMAP) is a German 

hyperspectral satellite mission that aims at monitoring and characterizing Earth’s 

environment utilizing its regional coverage on a global scale. EnMAP measures and 

models key ecosystem processes by extracting geochemical, biochemical and 

biophysical parameters that provide information on the status and evolution of 

various terrestrial and aquatic ecosystems. It is funded under the DLR Space Agency 

with resources from the German Federal Ministry for Economic Affairs and Climate 

Action and the mission is accompanied by an extensive scientific preparation program 

and educational initiative. In this context, we have developed an open source software 

(EnMAP-Box) and trained a number of experts in the past decade. This MOOC is the 

next step to share our knowledge with all potential users of hyperspectral data and 

encourage the growth of a global imaging spectroscopy community. 

Video: Basic-05: Sensor technologies & data acquisition techniques: EnMAP Mission 

 

 

  

 

Video URL: https://youtu.be/LQZNtLp3RfM 

  

file:///C:/Users/kkoch/Desktop/HYPERedu/Agri%20Mini%20MOOC/enmap.org
https://youtu.be/LQZNtLp3RfM
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1.3 Resources 

In this section, we have assembled resources used for the creation of this lesson that 

we recommend you use for further reading as they provide a lot more detail on the 

different topics. Please remember that this selection is not a complete overview of all 

resources – if you think an important resource is missing, let us and your fellow 

students know (e.g., in the discussion forum). 

 

You can find most figures of this lecture in the HYPERedu slide collection, available on 

EO-College. 

How to cite: K. Berger, M. Weiss., S. Steinhauser, J. Verrelst, C. Atzberger, G. Tagliabue, 

T. Hank, M. Wocher, T. Kuester, S. Foerster (2021). Spaceborne Imaging Spectroscopy 

of Agricultural Systems, HYPERedu, EnMAP education initiative, May 2021, LMU 

Munich. 

Available in the EO-College hyperspectral resources section under: https://eo-

college.org/resource/spaceborne-imaging-spectroscopy-of-agricultural-systems/ 

Hyperspectral remote sensing for agricultural monitoring 

State-of-the-art publications 

Atzberger 2013: Advances in remote sensing of agriculture: Context description, existing 

operational monitoring systems and major information needs. Remote sensing 5 (2), 949-981. 

Hank T., Berger K., Bach H., Clevers J.G.P.W., Gitelson A., Zarco-Tejada P., Mauser W. (2019): 

Spaceborne Imaging Spectroscopy for Sustainable Agriculture: Contributions and Challenges. 

Surveys in Geophysics. 40, 515-551. https://doi.org/10.1007/s10712-018-9492-0  

Lu, B., Dao, P.D., Liu, J., He, Y., Shang, J. (2020): Recent Advances of Hyperspectral Imaging 

Technology and Applications in Agriculture. Remote Sens. 12, 2659.  

https://doi.org/10.3390/rs12162659 

Park, B., & Lu, R. (Eds.). (2015). Hyperspectral imaging technology in food and agriculture (Vol. 

1). New York: Springer. 

Ustin, S.L., & Middleton, E.M. (2021): Current and near-term advances in Earth observation for 

ecological applications. Ecological Processes, 10, 1. https://doi.org/10.1186/s13717-020-

00255-4 

https://eo-college.org/forums/forum/beyond-the-visible/agricultural-applications/
https://eo-college.org/resource/spaceborne-imaging-spectroscopy-of-agricultural-systems/
https://eo-college.org/
https://eo-college.org/resource/spaceborne-imaging-spectroscopy-of-agricultural-systems/
https://eo-college.org/resource/spaceborne-imaging-spectroscopy-of-agricultural-systems/
https://doi.org/10.1007/s10712-018-9492-0
https://doi.org/10.3390/rs12162659
https://doi.org/10.1186/s13717-020-00255-4
https://doi.org/10.1186/s13717-020-00255-4
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Verrelst, J., Malenovský, Z., Van der Tol, C., Camps-Valls, G., Gastellu-Etchegorry, J.-P., Lewis, P., 

North, P., & Moreno, J. (2019): Quantifying Vegetation Biophysical Variables from Imaging 

Spectroscopy Data: A Review on Retrieval Methods. Surveys in Geophysics, 40, 589-629. 

https://doi.org/10.1007/s10712-018-9478-y 

Weiss, M., Jacob, F., & Duveiller, G. (2020): Remote sensing for agricultural applications: A meta-

review. Remote Sensing of Environment, 236, 111402. 

https://doi.org/10.1016/j.rse.2019.111402 

Further publications mentioned in text 

IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and 

III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core 

Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. 

Minoli, S., Müller, C., Elliott, J., Ruane, A.C., Jägermeyr, J., Zabel, F., Dury, M., Folberth, C., François, 

L., Hank, T., Jacquemin, I., Liu, W., Olin, S., & Pugh, T.A.M. (2019). Global Response Patterns of 

Major Rainfed Crops to Adaptation by Maintaining Current Growing Periods and Irrigation. 

Earth’s Future, 7, 1464-1480 

Ninomiya, S., Baret, F., & Cheng, Z.-M. (2019). Plant Phenomics: Emerging Transdisciplinary 

Science. Plant Phenomics, 2019, 2765120 

Power, A.G. (2010). Ecosystem services and agriculture: tradeoffs and synergies. Philosophical 

Transactions of the Royal Society B: Biological Sciences, 365, 2959-2971 

EnMAP – The German Spaceborne Imaging Spectroscopy Mission 

www.enmap.org 

Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, 

A.; Rossner, G.; Chlebek, C.; Straif, C.; Fischer, S.; Schrader, S.; Storch, T.; Heiden, U.; Mueller, A.; 

Bachmann, M.; Mühle, H.; Müller, R.; Habermeyer, M.; Ohndorf, A.; Hill, J.; Buddenbaum, H.; 

Hostert, P.; Van der Linden, S.; Leitão, P.J.; Rabe, A.; Doerffer, R.; Krasemann, H.; Xi, H.; Mauser, 

W.; Hank, T.; Locherer, M.; Rast, M.; Staenz, K.; Sang, B. The EnMAP Spaceborne Imaging 

Spectroscopy Mission for Earth Observation. Remote Sens. 2015, 7, 8830-8857. 

https://doi.org/10.3390/rs70708830 

 

https://doi.org/10.1007/s10712-018-9478-y
https://doi.org/10.1016/j.rse.2019.111402
http://www.enmap.org/
https://doi.org/10.3390/rs70708830
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2. Pre-assessment: Ready for 

hyperspectral applications? 

Are you ready for the application of imaging spectroscopy data? As mentioned before, 

in order to really enjoy this course, you should have some basic understanding of 

hyperspectral remote sensing principles. If you pass the following quiz, you are 

very welcome to continue. If you don’t score the required minimum (7 out of 10 

correct answers, 70 %) then we recommend that you look into some more basic 

resources before taking this course, e.g. our basic MOOC ‘Beyond the Visible: 

Introduction to Imaging Spectroscopy’. Anyway, you have unlimited attempts to 

pass the quiz. Here we go and good luck! 

Quiz: The Pre-assessment Quiz 

An object will appear red to the observer …(single-choice) 

☐ … if it absorbs only red wavelengths 

☐ … if it transmits only red wavelengths 

☐ … if it reflects all visible wavelengths equally 

☐ … if it mostly reflects red wavelengths  

 

Sort the wavelength ranges from short to long wavelengths 

  MIR 

  UV 

  NIR 

  SWIR 

  VIS 

  Microwaves 

  TIR 

 

Which parts of the electromagnetic spectrum can we see? (single-choice) 

☐ Ultraviolet light 

☐ Visible light 

☐ Infrared light 

☐ Microwaves  
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The spectral region where electromagnetic radiation passes through the 

atmosphere without much attenuation is known as … (single-choice) 

☐ … ozone hole 

☐ … atmospheric window 

☐ … black hole 

☐ … skylight  

Can you identify some advantages of imaging spectroscopy data? (multiple-

choice) 

☐ The data contains a high level of spectral detail 

☐ The data is very cheap to acquire 

☐ The data allow for the retrieval of a range of different surface variables 

☐ Analysis is much faster and easier compared to other types of remote 

sensing data 

What is a radiometric correction and what does it do? (multiple-choice) 

☐ It transforms digital numbers to radiance 

☐ It transforms digital numbers to reflectance  

☐ It involves data resampling using nearest neighbor, bilinear 

interpolation or cubic convolution methods 

☐ It involves a linear transformation in which correction coefficients (gain 

and offset) are applied to every image pixel 

Which surface material has usually the lowest reflectance in the SWIR? (single-

choice) 

☐ Clear water 

☐ Greem vegetation 

☐ Dry vegetation 

☐ Open soil 

Which factors influence the reflectance of vegetation? (multiple-choice) 

☐ Moisture content 

☐ Species 

☐ Phenology 

☐ Health  
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Healthy vegetation strongly reflects light in which parts of the 

electromagnetic spectrum? (single-choice) 

☐ Green and red  

☐ Blue and green 

☐ Green and near-infrared 

☐ Blue and red 

What is a Lambertian surface? (single-choice) 

☐ An ideal specular reflector  

☐ An ideal diffuse reflector 

☐ A calibration target 

☐ A perfect emitter 
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3. Introduction to imaging 

spectroscopy for agricultural 

applications 

In this lesson, we want to introduce you to the principles of imaging spectroscopy 

for agricultural applications – Charly will give you more details on the specific 

learning objectives in the video below. 

 

Video: Agri-02: Imaging Spectroscopy for Agricultural Applications - Lesson 3 Intro 

 

Video URL: https://youtu.be/bgIyKl4R3vs 

 

Let’s move on with the first topic of this lesson! 

 

  

https://youtu.be/bgIyKl4R3vs
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3.1 Imaging spectroscopy of vegetation (for agricultural 

applications) 

As electromagnetic radiation hits a surface, it is partly reflected, absorbed and/or 

transmitted. Thereby, the fractions of absorbed, transmitted and/or reflected 

radiation vary depending on material and 

wavelength Remember? This is the basis 

for remote sensing! 

The radiation penetrating into the leaf is 

subject to numerous processes like 

absorption by leaf pigments in 

chloroplasts, cell water and other leaf 

constituents. Leaves are radiation 

receivers: approximately 80 – 90% of the 

absorbed radiation occurs in the leaves! In 

addition, multiple scattering and 

refraction occurs on the cell walls within 

the cells, at chloroplasts and other cell 

organelles and especially in the air-filled intercellular spaces. 

 

 

  

Figure 3 Leaf cell structure. 

Figure in courtesy of Theres Kuester; Illustration of the EnMAP satellite with 

permission from DLR Space Administration 

Figure 2 Interaction of radiance with leaf. 

Adapted from Berger et al. (2021) Spaceborne Imaging 

Spectroscopy of Agricultural Systems (HYPERedu slide 

collection) 
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In addition to the complex interaction at the leaf level, the interaction with radiance 

occurs at three scales: 

 

In nature, we rarely 

deal with single 

leaves but entire 

plants and therefore 

need to consider the 

effect of several leaf 

layers. The leaf 

surface is the 

decisive size 

(determined by the 

leaf area index, LAI).  

With increasing LAI, 

reflectance 

decreases in the 

visual wavelength range due to absorption by leaf pigments and increases in the NIR 

wavelength range due to scattering by leaf and plant structure. Radiation that 

passes through several leaf layers adds to the effects of absorptance, 

reflectance and transmittance. Therefore, above a certain number of leaf layers, 

saturation occurs (which can be a limitation for the derivation of LAI from remote 

sensing data). 

Now, in remote sensing, we often deal with several plants that are forming vegetation 

stands or canopies. They are characterized by the morphology of plants and 

Figure 4 Interaction with incoming radiation at three scales. 

Figure reprinted from Kuester et al. (2014) with permission from IEEE 

Figure 5 Effect of multiple leaf layers. 

Figure in courtesy of Theres Kuester 
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phytoelements, the phenology and vitality of individual plants, the arrangement and 

density of the plants, the composition of plant species (natural vs. cultivated 

vegetation) as well as the geometry and reflectivity of soil background. 

  
Figure 6a Structure of a vegetation stand. 

Figure reprinted from Kuester et al. (2014) with permission from IEEE 

Overall, absorption characteristics of green vegetation are predominantly 

similar, even between plant species, because the molecular mechanisms underlying 

absorption are found in all plants (for example, O-H bond in water, cellulose and 

starch). Therefore, clear assignments of absorption bands and molecular processes 

are difficult to make. Except for the leaf pigments (e.g. chlorophyll and carotenoids), 

many biochemical plant substances occur in low concentrations, so that only minimal 

absorption bands are measured. In addition, there are multiple scattering 

processes at the leaf (mesophyll), plant, as well as at canopy level, which 

determine the shape of the absorption bands. 



3 Introduction  MOOC – Introduction to  

                 Hyperspectral Remote Sensing 
 

  

26 
 

 

In general, the spectral reflectance curve of healthy green vegetation has a minimum 

in the visible (VIS) part of the electromagnetic spectrum due to leaf pigments. 

Chlorophyll pigments selectively absorb blue (400–500 nm) and red (600–700 nm) 

light for photosynthesis and less green light (500–600 nm), resulting in a “green peak” 

and the green appearance of healthy vegetation to the human eye. Other pigments 

like carotenoids and xanthophylls have strong absorptions in the blue wavelengths 

range (400–500 nm) and are responsible for various leaf colors. 

The spectral reflectance curve increases greatly towards the near-infrared 

range (NIR). In the NIR (700-1300 nm), leaf absorption by pigments and other 

constituents is small and most energy is transmitted or reflected, depending on leaf 

structural characteristics, resulting in a high plateau. 

The range between red (VIS) light and near infrared is characterized by a steep slope, 

called the “red edge” and is used to detect plant stress. The reflectance of stressed 

vegetation is generally higher in the VIS and lower in the infrared range as compared 

to healthy vegetation. There is a flattening and shift to shorter wavelengths in the red 

edge portion of the spectrum. 

The SWIR region (1300–2500 nm) is dominated by water absorption. An increase 

in leaf moisture content results in a general decrease in reflectance, especially in the 

Figure 7 Reflectance spectra from green, stressed and dying vegetation. 

Brosinsky et al. (2019) Principles of imaging spectroscopy (HYPERedu slide collection) 
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NIR and SWIR, accompanied by an increase (depth, width) of the water absorption 

features near 1400 and 1900 nm. 

If vegetation is stressed, e.g., drought or extreme heat, the plants reaction may not 

be immediately apparent to the human eye – but it is visible to an (imaging) 

spectrometer! Very generally, the “red edge” shifts towards shorter wavelengths and 

becomes flatter, and the depths of water absorption features decreases. 

Finally, not only does the biochemical composition (e.g., chlorophyll content) but also 

the biophysical manifestation (e.g., the leaf area index) of vegetation influences the 

spectral signal. Vegetation is a geometrically complex phenomenon, where the 

geometric layout strongly influences the way that light interacts with 

biophysical and biochemical constituents in the leaves. The angular arrangement 

between illumination source, illuminated target and receiving sensor strongly 

influences the brightness of the signal, which becomes most obvious in the NIR 

plateau of a vegetation spectrum. Shortly after emergence, young plants tend to show 

steep leaf angles (erectophile). Throughout their life cycle plants will increasingly lower 

the leaves, especially during senescence (planophile). 

By the way, dry vegetation – a wheat field ready for harvest for example – looks 

surprisingly different from green vegetation. The spectrum of dry vegetation 

spectrum resembles the spectrum of bare soil rather than the spectrum of green 

vegetation. In order to 

differentiate between dry 

vegetation and bare soil, 

hyperspectral 

information is crucial, as 

these two land cover 

types can only be 

distinguished using the 

cellulose absorption 

feature around 2100 nm. 

 

  

Figure 8 Reflectance spectra of soil and dry vegetation. 

Brosinsky et al. (2019): Principles of imaging spectroscopy (HYPERedu slide 

collection) 
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By now, you should be familiar with the spectral reflectance properties of vegetation. 

Come on, test your knowledge and assign the terms to the spectra below: 

 

Interactive graph on the reflectance properties of vegetation 

Available under this LINK. 

 

 

  

Interactive Graphs

You need to be enrolled and logged in under EO College in order to be 

forwarded to the interactive Graphs. Figures of those are, however, 

incorporated in this offline version. For the best learning experience, we 

recommend to check out the graphs online. 

https://eo-college.org/courses/beyond-the-visible-imaging-spectroscopy-for-agricultural-applications/lessons/3-introduction-to-imaging-spectroscopy-for-agricultural-applications/topic/3-1-imaging-spectroscopy-of-vegetation-for-agricultural-applications/
https://eo-college.org/
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The interactive graphic below nicely displays how vegetation reflectance is high in the 

NIR. What the graph doesn’t show, however, is that vegetation is also partially 

transparent in spectral regions where the reflectance is high, i.e. in the NIR. When 

interpreting spectral data from vegetated surfaces, we thus have to consider that the 

spectral signature of the underlying soil will be shining through to some extent. This 

effect will be less pronounced if several layers of leaves are stacked (= high LAI), but 

nonetheless, knowledge about the spectral characteristics of the underlying soil is 

very important when analyzing vegetation spectra! The spectrum of the soil is mainly 

influenced by its physical (e.g. grain size) and chemical (e.g. carbon content) 

composition, but also depends on the weather at the time of the spectral acquisition. 

For instance, surface soil moisture strongly influences the brightness of the soil 

spectral signal, but may rapidly change in space and time.  

 

Interactive graph on the reflectance properties of vegetation 

Available under this LINK. 

  

https://eo-college.org/courses/beyond-the-visible-imaging-spectroscopy-for-agricultural-applications/lessons/3-introduction-to-imaging-spectroscopy-for-agricultural-applications/topic/3-1-imaging-spectroscopy-of-vegetation-for-agricultural-applications/
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Quiz: Imaging spectroscopy of vegetation (for agricultural 

applications) 

Fill in the blanks 

Potential answers to fill in the blanks: 

• red/ green/ blue 

• 550 nm/ 800 nm/ 2200 nm 

• cellulose/ chlorophylls/ anthocyanins 

The “  peak” is located around  nm and caused by the absorption of 

. 

 

With decreasing LAI, the spectrum of green vegetation … (multiple-choice) 

☐ … becomes increasingly flat (less pronounced absorption features) 

☐ … remains the same except for changes in the VIS region 

☐ … becomes increasingly more similar to a soil spectrum 

 

Dry vegetation and bare soil can be distinguished best based on … (single-

choice) 

☐ … the cellulose absorption feature around 2200 nm 

☐ … remains the same except for changes in the VIS region 

☐ … the cellulose absorption feature between 700 and 1300 nm 

☐ … their water content 
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Assign the correct surface material to its respective spectral signature 

 
A Choose an element 

 

B Choose an element 

 

C Choose an element 

 

D Choose an element 
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3.2 Biophysical and biochemical variables 

In this topic we will provide an overview of the most relevant agricultural traits that 

can be predicted using remote sensing data with examples of (spaceborne) 

hyperspectral mapping. Information of interest consists of functional traits, 

variables or features of agricultural systems, and how these vary in space and 

time (Weiss et al., 2020). The nature of these agronomic traits can be: 

• typological (e.g. crop type), 

• biophysical (e.g. soil moisture), 

• morphological (e.g. foliage height diversity, leaf dry mass per leaf area) 

• biochemical (e.g. leaf nitrogen content), 

• biological (e.g. crop phenology), 

• structural-geometrical (e.g. leaf inclination, LAI). 

 

 

We distinguish between primary variables and secondary variables. Primary 

variables, are directly involved in radiative transfer mechanisms. Some variables of 

interest, such as crop productivity, irrigation needs or phenology, however, result 

from a series of intertwined biophysical processes within the soil-plant-atmosphere 

continuum. These variables are so-called secondary variables and are not directly 

related to the radiative transfer mechanisms and thus cannot be derived directly from 

imaging spectroscopy data (they can nevertheless be accessed from remote sensing 

data in combination with process modelling using data assimilation strategies, Weiss 

et al., 2020). In this course, we will focus on primary variables. 

Variables vs. Parameters 

Note that the term “variable” is something that is measurable and has a 

physical or agronomical meaning (Jeuffroy et al., 2014). In contrast, a 

parameter is something resulting from an empirical fitting or model. Hence, 

we prefer the term variable in this context. 
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Primary variables – Leaf traits 

Leaf level traits describe the biochemical and morphological properties of leaves, 

including pigments (chlorophyll a + b, carotenoids, anthocyanins), nitrogen, 

phosphorus, leaf mass per area, leaf water content, carbon and nonstructural 

carbohydrates (sugars, starches). These traits are mainly involved in 

photosynthetic processes and carbon uptake. Leaf structural compounds 

include cellulose, fiber, lignin and hemicellulose. Typically, leaf traits are given in area-

based (µg / cm²) or mass-based units (% or mg/g). 

 

Figure 9 Primary and secondary variables in imaging spectroscopy. Berger et al. (2021) 
Spaceborne Imaging Spectroscopy of Agricultural Systems (HYPERedu slide collection)  
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Leaf chlorophyll content (LCC) 

Chlorophyll molecules 

allow the conversion of 

absorbed solar 

irradiance into stored 

chemical energy. 

This is accomplished by 

harvesting light energy 

and supplying 

electrons to the 

electron transport 

chain, leading to the 

production of NADPH 

for the reactions of the 

Calvin–Benson Cycle 

(Croft and Chen 2017). 

The amount of solar 

radiation absorbed by 

a leaf is largely a 

function of the foliar concentration of photosynthetic pigments. Therefore, low leaf 

chlorophyll content (LCC) limits the photosynthetic capacity and reduces primary 

productivity of crops (plants). 

LCC is usually quantified in units of μg chlorophyll per cm2 (leaf area), or μmol m−2or 

μg g-1. In situ measurements of LCC are usually performed non-destructively via 

the Konica Minolta device Chlorophyll Meter SPAD-502Plus. 

“In agricultural systems, the accurate spatial mapping of leaf chlorophyll content is 

important for monitoring vegetation health and plant stress, which can be used to guide 

fertilizer application in order to optimise crop yield and reduce excessive nutrient loss.” 

(Croft & Chen 2017) 

  

Figure 10 Exemplary map of LCC, generated using the hybrid processor of the 

EnMAP-Box Agri-tools: Neural network trained over PROSAIL data base 

(agricultural region of Neusling (Bavaria, Germany). 

In courtesy of Martin Danner, Hybrid Inversion tool, Agri-Apps (EnMAP-Box) 

https://www5.konicaminolta.eu/en/measuring-instruments/products/colour-measurement/chlorophyll-meter/spad-502plus/introduction.html
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Leaf carotenoid content (Cxc) 

Plants contain a number of different 

types of carotenoids (Cxc), which fall into 

the subgroups of carotenes or 

xanthophylls. The most common 

carotenoid pigments present in leaves 

are represented b-carotene and five 

xanthophylls (lutein, zeaxanthin, 

violaxanthin, antheraxanthin, and 

neoxanthin) (Croft & Chen., 2017). 

Carotenoids and xanthophylls play 

an important role in 

photoprotection, accessory light 

harvesting and energy transfer 

(Gitelson et al. 2002; Kong et al. 2017). 

They are present in variable proportions during the differentiation and ageing of 

leaves, but abiotic stresses can inhibit carotenoid production (Hank et al., 2019). The 

amount of carotenoids is commonly expressed in different units, e.g., as mass per 

unit surface area (µg cm−2), or as mass per unit fresh leaf weight (mg g−1). 

“Carotenoid pigments provide fruits and flowers with distinctive red, orange and yellow 

colors as well as a number of aromas, which make them commercially important in 

agriculture, food, health and the cosmetic industries.” (Cuttriss et al., 2011) 

Leaf anthocyanin content (Cant) 

Anthocyanins (Cant)are the most common class of flavonoids, i.e. the most widespread 

red pigments (Hank et al., 2019). They are responsible for the orange to red, or purple 

to blue coloration in plant tissue depending on the molecule, temperature, and pH 

value. Flavonoids are commonly found in blueberry, raspberry, black rice or black 

soybean (Tanaka et al. 2008). 

“Anthocyanins are actively produced as a result of environmental 

stresses (e.g., low or high temperatures), during senescence and 

following budburst, before the photosystems are fully developed.” 

(Gamon & Surfus, 1999; Croft & Chen, 2017).  

Hence, they can be of interest for precision agriculture, since 

anthocyanins are typically present when plants suffer from 

Figure 11 Exemplary map of Leaf carotenoid content 

(Cxc), generated using Analyze Spectral Integral (ASI) of 

the EnMAP-Box Agri-tools (Barrax, Spain). 

Figure reprinted from Wocher et. al. (2020) 

Figure 12 Exemplary macro shot 

of a wild berry. 
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environmental stresses such as drought, freezing, air pollution or nutrient deficiency (Lee & 

Gould 2002; Springob et al. 2003). 

Leaf water content (CW or EWT) 

Leaf water content (Cw) or equivalent 

water thickness (EWT) describes the 

thickness of a theoretical layer of water 

(in cm), which absorbs radiation 

according to the Lambert–Beer law 

(Nobel, 2009). Hence, EWT corresponds 

to the volume of water that is stored 

within the cells of living vegetation (Hank 

et al., 2019). From a remote sensing 

perspective, it is difficult to decouple the 

contributions of leaf water content from 

LAI. Thus, the total canopy water content 

per unit ground area (CWC, g m−2), rather 

than leaf EWT is usually “observed” or 

retrieved (Clevers et al., 2010). 

“One aspect of detecting stress in plants from hyperspectral data that has received 

considerable attention is the measurement of leaf water content.” (Murphy et al. 2019). As 

it is difficult to assess leaf water content remotely, the total canopy water content per unit 

ground area (CWC) is retrieved as a measure for the moisture state of a canopy, which is 

of interest for practical farming for the detection of plant water stress. 

Leaf mass per area (LMA) 

Leaf Mass per Area (LMA) denotes the relation of leaf mass to leaf area in a unit of kg 

dry matter per m² or g per cm² leaf area. It is a measure of the leaf composition: the 

first leaves developed by a plant at the beginning of its growth cycle are usually 

lightweight, so that the area available for interception with solar radiation expands 

rapidly during early growth phases. During later development stages, plants tend to 

invest more energy into the structural stability of the leaves, causing the LMA to 

Figure 13 Exemplary map of Leaf water content (EWT, 

Cw), generated using Analyze Spectral Integral (ASI) of 

the EnMAP-Box Agri-tools (Barrax, Spain). 

Figure reprinted from Wocher et. al. (2020) 
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increase over the growing period (Hank et 

al., 2019). LMA is a fundamental leaf 

functional trait playing a key role in 

ecosystem modelling (Asner et al. 2011). 

“LMA is an essential indicator of plant 

functioning, including photosynthetic and 

respiratory rates, chemical composition or 

resistance to herbivory (de la Riva et al. 2016). 

The importance of LMA for farming compared 

to the other variables is therefore rather 

indirect but nonetheless important, in 

particular regarding the relationship of LMA to 

photosynthesis–nitrogen relationships (Poorter 

& Evans 1998).” Hank et al. (2019) 

 

Leaf protein (Cp) / nitrogen content (N) 

N is taken up by the roots from soil in the form of NH4+ and NO3−, and it is a rather 

small component of leaf dry weight, ranging from 0.3% to 6.4% (Wright et al., 2004). A 

large amount of N is invested in proteins (and chlorophylls) within the leaf cells. 

Proteins are the major N containing biochemical constituent of plants (Kokaly et al., 

2009).  

 

Figure 15 Nitrogen as key component of biomass (left) and its proportional 

allocation in a C3 plant leaf (right). Adapted from Chapin et al. (1987). 

Figure reprinted from Berger et al. (2020) 

Figure 14 Exemplary map of LMA, generated using the 

hybrid processor of the EnMAP-Box Agri-tools: neural 

network trained over PROSAIL data base (Neusling, 

Bavaria, Germany). 

In courtesy of Martin Danner, Hybrid tool, Agri-Apps 

(EnMAP-Box) 
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Vegetation growth is not a static but a dynamic process of constant nitrogen turnover 

(Kattge, 2002). Early in a growing season N is bound in vegetative tissues. During the 

reproductive phase, N is moved or reallocated from the vegetative organs (leaves) to 

reproductive structures, such as seeds, ears or fruits (Ohyama, 2010, see also review 

study Berger et al., 2020a). For agriculture, it is usually not the leaf protein content 

that is important, but the protein content in the harvested crop, i.e. in the grain. 

However, since electromagnetic radiation cannot penetrate the grain, crop nitrogen 

content cannot be measured with remote sensing. For this purpose, growth models 

must be used that reproduce nitrogen transformation and translocation in the crop. 

Therefore, while we count leaf nitrogen content as “primary variable”, crop nitrogen 

content is ranked as “secondary variable”. 

„Nitrogen availability produces rapid and early crops’ growth, increases protein content of 

crops, facilitates the uptake and utilization of other nutrients as potassium and 

phosphorous, improves fruit quality, and controls overall growth of plants [..] Analyzing the 

N amount in soil and crops and the application of N fertilizer in the event of a deficit are 

essential to improve crop production…“ (Salima et al., 2019) 

Carbon-based leaf constituents (CBC) 

Carbon-based constituents (CBC) include cellulose, lignin, hemicellulose, sugars and 

starch. These abundant molecules produced by terrestrial photosynthesis are the 

main components of non-photosynthetic vegetation (NPV). Each constituent of CBC 

has a specific carbon content (Ma et al., 2018). “Together with the carbohydrate 

polymers cellulose and hemicellulose, lignin forms the largest portion of 

“lignocellulosic” plant materials. Thus, lignin accounts for a substantial portion of the 

total organic carbon in the biosphere, surpassed only by cellulose.” (Frei et al., 2013) 

“Lignin from crop residues plays an important role in the soil organic carbon cycling, as it 

constitutes a recalcitrant carbon pool affecting nutrient mineralization and carbon 

sequestration. Its function in plants also includes the defence against abiotic and biotic 

stresses, especially pathogens and insects” (Frei et al., 2013). 

Sun-induced fluorescence (SIF) 

During photosynthesis, plants absorb sunlight in the 400–700 nm spectral range. A 

small fraction of the absorbed energy is re-emitted at longer wavelengths (650-800 

nm) as a faint signal known as sun-induced chlorophyll fluorescence (SIF). However, 

the very coarse spatial resolutions of current satellite SIF sensors (40 km GOME-2), 
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and also those in the near future, e.g. FLEX with 300 m, is limited for agricultural 

applications, except at regional/global scales. 

 

The strong link between SIF and photosynthesis opens possibilities of inferring gross 

primary productivity (GPP) (=gross uptake of atmospheric carbon dioxide (CO2)) from SIF 

(Schlau-Cohen & Berry, 2015; Mohammed et al., 2019). 

  

Figure 16 The process of sun-induced fluorescence (SIF). 

Images reprinted from Sang-O, J. (2017) and Couleur (2018) 

Summary of leaf level traits 

• The inference of leaf level traits from remote sensing observations is 

challenging as the strength of the signal transmitted from leaf to canopy 

level is controlled by structural variables of the canopy, such as LAI or 

leaf angle distribution (Xie et al., 2019). 

• Note that there are also stems and other plant organs (fruits, flowers, 

heads …), which often are not considered in modeling approaches! 

• The majority of methods estimating leaf level traits rely on parametric 

regressions, and some machine learning approaches (more 

information on retrieval approaches in the next lesson). 
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Primary variables – Canopy level traits 

Canopy level variables or traits mainly describe the structural properties of a 

vegetation stand. In contrast to leaf biochemicals and leaf structural compounds, 

the added value of hyperspectral data in comparison to multi-spectral data for the 

retrieval of canopy level traits is less obvious. Nonetheless, these traits are 

of essential importance for agriculture due to their strong link to crop status 

and yield potential (Atzberger, 

2013). 

The dimensionless leaf area 

index (LAI) characterizes plant 

canopies and is defined as green 

leaf area [m²] per unit ground 

area [m²]. It is of upmost 

importance for eco-physiology in 

many ways: in modelling, it 

serves as a scaling factor, by 

controlling processes like 

photosynthesis and 

evapotranspiration (Weiss et 

al.,2004; Bréda, 2003). Acting as 

a transition zone between plants and the atmosphere, most processes of gas and 

water exchange as well as the interception of rain water, take place on the surface of 

leaves (Bréda, 2003). By extinction of incident radiation, variations in the LAI influence 

the micro climate within and above the canopy (Welles, 1990). Combining the leaf area 

parameter with information on the distribution of leaf angle, it is possible to model 

the amount of absorbed photosynthetically active radiation (APAR). Ground-based 

measurements of LAI play a crucial role for the calibration and validation of remote 

sensing data. 

The biophysical trait of LAI has attracted a lot of interest in optical remote sensing 

studies related to agriculture. “Many applications, including crop growth and yield 

monitoring, require accurate long-term time series of leaf area index (LAI) at high 

spatiotemporal resolution with a quantification of the associated uncertainties” (Yin et al., 

2019) 

  

Figure 17 Schematic representation of leaf area index (LAI) 

concept. 

HYPERedu (2022) 
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Leaf inclination angle distribution (LAD) 

Leaf inclination angle distribution 

(LAD) or average leaf inclination 

angle (ALIA) is an important 

characteristic of vegetation 

canopy structure affecting light 

interception within the canopy. 

Leaf orientation with respect to 

the position of the sun is a key 

factor in determining the amount 

of light intercepted by a leaf, and 

also affects the fraction of 

incident sunlight that penetrates 

the canopy to lower layers of 

leaves (Huemmrich 2013). The 

orientation of a leaf is described 

by its azimuth and inclination 

angles (in °). 

Information of ALIA can be also used 

as an indicator of water-stress:  significant correlations were found between inclination 

angle and leaf water content in leaflets and petioles of crops (Nagasuga et al., 2013). 

Fractional vegetation cover (fCOVER or FVC) 

Green fractional vegetation cover is 

an important biophysical variable 

describing the Earth’s surface 

system. It “is generally defined as the 

ratio of the vertical projection area of 

above-ground vegetation organs on 

the ground to the total vegetation 

area”, Liang & Wang (2020). The 

fraction of the green vegetation in the 

nadir direction (in %), is used to 

separate vegetation and soil in 

energy balance processes, including 

Figure 18 Exemplary map of ALIA, generated using the hybrid 

processor of the EnMAP-Box Agri-tools: Neural network trained 

over PROSAIL data base (agricultural region of Neusling (Bavaria, 

Germany). 

In courtesy of Martin Danner, Hybrid Inversion tool, Agri-Apps 

(EnMAP-Box) 

Figure 19 Exemplary map of fCOVER estimations (left), based on a 

hybrid retrieval model using ARTMO MLRA-toolbox: GPR trained over 

SCOPE model simulated data base (Munich, Germany). 

In courtesy of Jochem Verrelst, ARTMO 
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temperature and evapotranspiration (Li et al., 2015). Fractional vegetation cover is 

also known as green ground cover (GGC in %) (Zillmann et al., 2015).  

Fractional vegetation cover is useful for various applications in the field of agriculture, 

ranging from irrigation (e.g., Calera et al., 2001) and crop residues management (e.g., 

Daughtry et al., 2005) to yield estimations (e.g. Castaldi et al., 2015). 

Fraction of absorbed photosynthetically active radiation (fAPAR) 

Photosynthetically active 

radiation (PAR) corresponds to 

the incoming solar radiation in 

the spectral range of 400–700 

nm while absorbed 

photosynthetically active 

radiation (APAR) corresponds 

to the amount of PAR 

absorbed by the plant for 

photosynthesis (Gallo and 

Daughtry 1986). The fraction of 

absorbed photosynthetically 

active radiation (fAPAR) is the 

proportion of PAR absorbed by 

the plant, expressed as 

fraction. fAPAR is an 

important biophysical 

variable in models 

assessing the primary productivity of vegetation and, more generally, in carbon 

cycle models between the terrestrial boundary layer and the atmosphere (Vina and 

Gitelson 2005, Rahmann et al., 2014). According to Cawse-Nicholson et al. (2021), 

fAPAR is not strictly a trait, though it was listed alongside others due to its direct 

relation to primary productivity (Zhang et al., 2012).  

Remote sensing time-series of fraction of absorbed photosynthetically active radiation 

(fAPAR) have been “confirmed to be a reliable tool for regional crop yield forecasting with a 

strong potential to contribute effectively to operational systems such as those currently 

running at continental/global level (GIEWS, NASS, FAS, CropWatch or MCYFS).” (López-

Lozano et al., 2015)   

Figure 20 Exemplary map of fAPAR estimations (left), based on a hybrid 

retrieval model using ARTMO MLRA-toolbox: GPR trained over SCOPE 

model simulated data base (Munich, Germany). 

In courtesy of Jochem Verrelst, ARTMO 
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Canopy nitrogen content mapping 

Nitrogen (N) is a rather small component of leaf dry weight 

(see leaf protein (Cp) / nitrogen content (N) in leaf level 

traits). However, it controls the overall growth of plants and 

“the application of N fertilizer in the event of a deficit are 

essential to improve crop production …“ (Salima et al., 

2019), which is why analyzing its amount in soil and plants 

is of specific interest at canopy scale. 

„Nitrogen availability produces rapid and early crops’ growth, 

increases protein content of crops, facilitates the uptake and 

utilization of other nutrients as potassium and phosphorous, 

improves fruit quality, and controls overall growth of plants [..] 

Analyzing the N amount in soil and crops and the 

application of N fertilizer in the event of a deficit are 

essential to improve crop production…“ (Salima et al., 2019) 

Non-photosynthetic vegetation (NPV) 

NPV refers to plant parts that do 

not perform photosynthesis, such 

as plant litter, crop residues, 

senescing foliage, branches and 

stems (Li & Guo 201, Hank et al., 

2019). Crop residue (CR) on the soil 

surface or a protective mulch 

significantly reduces erosion (by 

wind and water), nutrient loss, 

evaporation, and soil temperature. 

Further, it reduces soil compaction 

due to agricultural machinery (Pepe 

et al., 2020) and enhances soil 

organic carbon through improved 

soil structure.  

In addition, crop residues may contain significant amounts of nitrogen, which enter 

the soil through ploughing. 

Figure 21 Aboveground N content generated by 

heteroscedastic Gaussian process regression 

(VHGPR) modelling (Barrax, Spain). 

Adapted from Berger et al. 2020b 

Figure 22 Exemplary map of NPV biomass, based on hybrid 

retrieval method using ARTMO MLRA-toolbox: GPR trained 

over PROSAIL-PRO simulated data base. 

PRISMA scene over North of Munich, Bavaria, including Munich-

North-Isar test site 
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For agricultural applications, NPV biomass (e.g. in g m−2) or crop residue cover (%) is 

particularly interesting since it indicates (seasonal) drought events or other severe injuries. 

 

 

  

From leaf to canopy level traits 

• The majority of methods estimating canopy level traits rely on machine 

learning approaches (more information on retrieval approaches and 

widely used models such as PROSAIL in the next lesson – Lesson 4). 

• Typically, LAI is used to upscale leaf-level variables to the canopy level 

(e.g. LCC to canopy chlorophyll content). Global sensitivity analysis 

(GSA) of the PROSAIL model (Verrelst et al., 2015) showed that LAI is 

the primary driving variable of canopy reflectance, explaining up to 40% 

of the total variability (with interactions). Another important variable 

with similarly high impact is leaf inclination angle distribution (LAD). 

• The SAIL model (Verhoef, 1984), and its adapted and improved 

versions, is a commonly used radiative transfer model to describe 

radiation interaction with the canopy for agricultural crops, usually it is 

coupled with the PROSPECT model to “PROSAIL”. 

• A specific extension of PROSAIL is the SCOPE model family (van der Tol 

et al., 2009), coupling radiative transfer, energy balance, and 

photosynthesis models. A very recent adaption is provided by Pacheco-

Labrador et al. (2021), namely the senSCOPE model for canopies 

combining green and brown senesced leaves. 

• For a better representation of row crops and corresponding derivation 

of biophysical / biochemical variables, more complex 3D or hybrid 

models should be used, such as DART (Gastellu-Etchegorry et al., 1996). 
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Secondary variables 

One example of secondary variables is the phenological state of the canopy: The 

spectral signature alone does discriminate the fine increments of phenological 

progress that in practical agriculture normally are monitored using the BBCH scale on 

phenology. Only, when a-priori knowledge (e.g. crop type and crop variety) is available 

and additional information (e.g. meteorological data) is considered, are we able to 

delineate the growth stage with adequate accuracy. 

Another important secondary variable is biomass, as the accumulation of biomass in 

agriculture determines the spatial distribution of plant protection agents. 

Electromagnetic radiation in the optical domain does not penetrate the lignified parts 

of the canopy. Measuring biomass from remote sensing alone therefore remains 

difficult. Only when canopy level variables derived from remote sensing (e.g. LAI) are 

combined with meteorological data, soil maps, terrain information etc. with the help 

of growth process models, can we gain access to this crucial management variable. 

  

https://en.wikipedia.org/wiki/BBCH-scale
https://en.wikipedia.org/wiki/BBCH-scale
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Quiz: Biophysical and biochemical variables 

With respect to vegetation traits, what are “primary variables”? (multiple-

choice) 

☐ Variables that are most important for agricultural applications 

☐ Variables that are directly involved in radiative transfer mechanisms 

☐ Variables that are not directly related to the radiative transfer 

mechanisms 

☐ Variables that can be inferred directly from imaging spectroscopy data 

 

What is the difference between leaf and canopy traits? (single-choice) 

☐ Leaf level traits can only be assessed in the laboratory while canopy 

level traits can be assessed in the field 

☐ Leaf level traits describe the biochemical and morphological properties 

of leaves while canopy level traits mainly describe the structural 

properties of a vegetation stand 

☐ In fact, there is not really a difference 

 

Which of the traits below are described as canopy traits? (multiple-choice) 

☐ Chlorophyll 

☐ Leaf Area Index 

☐ Leaf Water Content 

☐ Fractional vegetation cover (fCOVER or FVC) 

☐ Leaf inclination angle distribution 

 

What definition corresponds to the LAI? (single-choice) 

☐ The LAI characterizes plant canopies and is defined as green leaf area 

[m²] per unit ground area [m²] 

☐ The LAI denotes the relation of leaf mass to leaf area in a unit of kg dry 

matter per m² or g per cm² leaf area 

☐ The LAI, also called average leaf inclination angle (ALIA), is an important 

characteristic of vegetation canopy structure affecting light interception 

within the canopy 
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3.3 Ground reference data acquisitions 

Campain/ Sampling design 

Field measurements often complement remote sensing data as calibration and/or 

validation data. But before rushing to the test sites and taking measurements, it is 

wise to structure individual measurements into an organized campaign, putting 

special emphasis on the spatial patterns of variables and the optimal sampling 

scheme. When planning a field campaign, you should always keep in mind that the 

layout will significantly influence the results and that collecting variables over an entire 

region of interest at high resolution is often impossible. Hence, specific sampling 

schemes are required for optimal representation. 

Please be aware that these field measurements do not represent “the truth” which is 

why we prefer calling them ground reference, ground measurement or ground data. 

Of course, errors in ground data can never be eliminated completely. You can, 

however, improve data quality by handling the respective instruments correctly and 

by considering the spatial patterns you want to capture. 

Some guidelines on planning field campaigns, like who should measure, where, what, 

how and when can be found in our reference section. Some instruments and 

procedures that we regularly use to gather field reference data for agricultural 

applications will be presented in the following video. 

In the course you will see several videos that we have made interactive for 

you. They contain questions that you can try to answer. The answers are not graded, 

you have countless attempts, you can skip them, and even rewind and fast-forward 

through the video to find the correct answer. Give it a try! They will help you prepare 

for the graded quizzes and to take away the most important aspects of each topic. 

 

 

 

  

In this document, you will find the questions below the videos. The questions can 

be answered with the help of the videos. To check the answers, the video must 

be watched online in the MOOC on https://eo-college.org/courses/beyond-the-

visible/. 

 

https://eo-college.org/courses/beyond-the-visible/
https://eo-college.org/courses/beyond-the-visible/
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Ground reference data acquisition in the field 

How are ground reference data collected in the field? Come and join us (again?) to 

the LMU test sites near Munich (if you’ve taken the basic MOOC ‘Beyond the Visible: 

Introduction to Hyperspectral Remote Sensing’ the first minute might seem familiar). 

Video: Agri-03: Imaging Spectroscopy for Agricultural Application - Field Data 

Acquisition 

 
Video URL: https://youtu.be/e7FkCjzZNZM 

 

You might have noticed that we measure some variables in the field that we did not 

yet define. For example, we measured crop height as it is an important variable for 

modelling the growth of biomass. It determines how rough the surface is in relation 

to advective air currents and thus how far the wind can penetrate the stand to 

promote gas exchange. Other variables cannot be measured in-situ (in the field) but 

need to be assessed in the lab. Our student assistants will show you how we assess 

Leaf Mass Area (LMA) and aboveground biomass. 

Video: Agri-04: Imaging Spectroscopy for Agricultural Applications - Lab Data 

Acquisition 

 
Video URL: https://youtu.be/C7jmsZnWgHE  

VIDEO: Field Data Acquisition 

What would be unuseful ancillary information? (single choice) 

☐ weather conditions (sampling day or previous days) 

☐ time of day 

☐ weather forecast 

https://youtu.be/e7FkCjzZNZM
https://youtu.be/C7jmsZnWgHE


3 Introduction  MOOC – Introduction to  

                 Hyperspectral Remote Sensing 
 

  

49 
 

 

Other variables that cannot be assessed in the field with high reliability are 

anthocyanins and carotenoids, they, too, need lab work. However, their amounts are 

closely correlated to chlorophyll content during the phase of vegetative growth, a 

relationship that we exploit in our models as you will see later in the “hands-on” 

exercises. 

Besides, we did not assess fCover and fAPAR. For those measurements, we refer you 

to Muir et al. (2011) and Li et al. (2021), respectively. Actually, in order to show you 

how we take reference measurement with our field spectroradiometer we’ve taken 

you to the LMU test sites near Munich in the basic MOOC too. If you haven’t seen the 

video yet, you can do so here: 

Video: Basic-12: Sensor technologies & data acquisition techniques: ASD Field 

 

Video URL: https://youtu.be/7S1XoN-NifM 

  

VIDEO: Lab Data Acquisition 

Which variable(s) can be analysed from the dried leaf samples in 

addition? (single choice)  

☐ The dry samples are ground into fine powder using a laboratory mill. 

This powder is then analyzed for percentage carbon and nitrogen 

content via combustion in a special analyzer. 

☐ The dry samples are used to estimate the biomass content of the 

respective sampling site. 

☐ The dry samples are used to assess plant water content 

 

https://youtu.be/7S1XoN-NifM
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Quiz: Ground reference data acquisitions 

Which of the Variables below can only be measured in the lab? (multiple-choice) 

☐ Chlorophyll 

☐ Leaf Mass Area (LMA) 

☐ Leaf Area Index (LAI) 

☐ Leaf Carbon and Nitrogen contents 

☐ Plant Water Content 

☐ Phenology 

 

What does the SPAD chlorophyll meter measure to assess chlorophyll 

content? (single-choice) 

☐ diffuse radiation, i.e. transmission, underneath the canopy in 

combination with measurements above the canopy to serve as 

reference 

☐ absorbance of LED-light by the leaf at two different wavelengths in the 

spectral domain of red and near-infrared 

☐ Chlorophyll is linked to plant phenology and can be assessed with the 

BBCH scale 

☐ absorbance of LED-light by the leaf at two different wavelengths in the 

spectral domain of near-infrared and shortwave infrared 
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3.4 Resources ’Methodological aspects’ 

In this section, we have assembled resources used for the creation of this lesson that 

we recommend you use for further reading as they provide a lot more detail on the 

different topics. Please remember that this selection is not a complete overview of all 

resources – if you think an important resource is missing, let us and your fellow 

students know (e.g., in the discussion forum). 

 

You can find most figures of this lecture in the HYPERedu slide collection, available on 

EO-College. 

Sources for further reading 

Topic 3.1: Imaging spectroscopy of vegetation (for agricultural applications) 

Huete A.R. (2004): Remote Sensing for Environmental Monitoring. In: Artiola, J.F., Pepper, I.L, 

and M.L. Brussea (Eds), Environmental Monitoring and Characterization, Elsevier Academic 

Press, 183-206. 

Kuester, T., Spengler, D., Barczi, J., Segl, K., Hostert, P. and Kaufmann, H., 2014, “Simulation of 
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Quiz: Introduction to imaging spectroscopy for agricultural 

applications 

Please sort the traits below into canopy and leaf level traits 

 

Pigments Choose an element 

 

LAD Choose an element 

 

LMA Choose an element 

 

SIF Choose an element 

LAI Choose an element 

Fractional 

Vegetation cover 

(fCOVER or FVC) 

Choose an element 

Leaf Water Content Choose an element 

Leaf inclination 

angle 

Choose an element 

ALIA Choose an element 

 

Which ground reference data can be collected in the field with no need for lab 

analyses? (multiple-choice) 

☐ Leaf chlorophyll content 

☐ Leaf area index 

☐ Leaf mass per area 

☐ Phenology 
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Which of the variables below are secondary variables that cannot be inferred 

directly from imaging spectroscopy data? (multiple-choice) 

☐ LAI 

☐ Phenology 

☐ Pigment content 

☐ Irrigation needs 

 

Can secondary variables be retrieved from imaging spectroscopy data? (single-

choice) 

☐ Yes, as they indirectly drive radiative transfer they can be modelled 

using imaging spectroscopy data, though sometimes additional 

information is helpful 

☐ Yes, but only one or two as they are not connected with radiative 

transfer 

☐ No, unfortunately not 

 

With decreasing chlorophyll content, the spectrum of green vegetation … 

(single-choice) 

☐ … becomes increasingly flat (less pronounced absorption features) 

☐ … remains the same except for changes in the VIS region 

☐ … becomes increasingly more similar to a soil spectrum 
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Assign where the reflectance of vegetation is influenced by … 

 

 
 

A Choose an element 

B Choose an element 

C Choose an element 

Fill in the blanks 

Potential answers to fill in the blanks: 

• red/ green/ blue 

• 550 nm/ 800 nm/ 2200 nm 

• cellulose/ chlorophylls/ anthocyanins 

The “  peak” is located around  nm and caused by the absorption of 

. 

With respect to vegetation traits, what are “primary variables”? (multiple-

choice) 

☐ Variables that are most important for agricultural applications 

☐ Variables that are directly involved in radiative transfer mechanisms 

☐ Variables that are not directly related to the radiative transfer 

mechanisms 

☐ Variables that can be inferred directly from imaging spectroscopy data 
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What is the difference between leaf and canopy traits? (multiple-choice) 

☐ Leaf level traits can only be assessed in the laboratory while canopy 

level traits can be assessed in the field 

☐ Leaf level traits describe the biochemical and morphological properties 

of leaves while canopy level traits mainly describe the structural 

properties of a vegetation stand 

☐ While the majority of leaf level traits rely on parametric regressions, 

canopy level traits are often retrieved using machine learning 

approaches 

☐ In fact, there is not really a difference 

 

What definition corresponds to the LAI? (single-choice) 

☐ The LAI characterizes plant canopies and is defined as green leaf area 

[m²] per unit ground area [m²] 

☐ The LAI denotes the relation of leaf mass to leaf area in a unit of kg dry 

matter per m² or g per cm² leaf area 

☐ The LAI, also called average leaf inclination angle (ALIA), is an important 

characteristic of vegetation canopy structure affecting light interception 

within the canopy 
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4. Methodological aspects 

Welcome to our second lesson! Did you ever wonder during the first lesson how to 

actually retrieve variables – or traits – from hyperspectral imagery and/or how to 

connect remote sensing with field data? Actually, it’s less complicated than you might 

think. However, there are quite a few methods out there, which is why we will first give 

a general overview of methods applied in agricultural imaging spectroscopy. Then we 

will provide information on the state of the art methods in more detail that you will 

be trained in throughout this course. You’ll also learn about data and software 

resources as well as the general workflow. As usual, what may sound dull is actually a 

really fun lesson with lots of interactive content and videos! Charly will give you some 

more details on the learning objectives in the video below. Ready? 

Video: Agri-05: Imaging Spectroscopy for Agricultural Applications - Lesson 04 Intro 

 

Video URL: https://youtu.be/h9WkC5T1MOA 

 

Let’s move on with the first topic of this lesson! 

  

https://youtu.be/h9WkC5T1MOA
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4.1 Data and software resources 

Data resources were quite a big topic in the basic MOOC ‘Beyond the Visible: 

Introduction to Hyperspectral Remote Sensing’. In this topic, we’ve linked some of the 

resources that we think might be important if you are working in an agricultural 

context, including some updates (YES! EnMAP data is now available!!!) and additional 

materials. 

Data  

For a long time, the availability of hyperspectral data was limited to expensive flight 

campaigns for small, selected areas with infrequent revisits (if at all). The “applications” 

were mostly related to scientific questions and method development rather than 

designed to answer real-world questions. Well, with the recent and future launch of 

(additional) hyperspectral satellites, this is going to change! 

Spaceborne 

There are already a number of Earth observing imaging spectrometers in space today. 

Often, the data is made available free of charge (for scientific purposes). In this 

section, we would like to introduce you to – or remind you of – some data sources for 

spaceborne imaging spectroscopy data. 

EnMAP 

No, it’s not a joke – after years of delay (to make it a 

perfect sensor), EnMAP finally launched into space on 

April 1st 2022! Wow! 

After about seven months of commissioning phase, 

during which data was calibrated and validated, the 

first data is finally becoming available to the public. 

There are two main entry points to get EnMAP data using the Data Access Portal: 

the EnMAP Instrument Planning Portal and the EOWEB® GeoPortal. On the EnMAP 

Instrument Planning Portal users can register, submit proposals, and plan and 

request future orders. The EOWEB® GeoPortal contains the full EnMAP Data archive. 

  

http://enmap.org/
https://www.youtube.com/watch?v=wIw8DE-YaYc
https://planning.enmap.org/
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Prisma 

PRISMA funded by Italian Space Agency (ASI), is an Earth 

observation satellite with innovative electro-optical 

instrumentation which combines a hyperspectral sensor 

with more than 200 bands in the VNIR to SWIR range with a 

panchromatic camera. The satellite was successfully 

launched in March 2019. Users can obtain archive data and 

request new data acquisitions after registering in the 

PRISMA data portal. 

With the kind cooperation of ASI, we have produced three screencasts for the 

previous MOOC. 

In the first video you will get a short overview of the PRISMA mission and learn 

step by step how to register in the PRISMA data portal. The second video 

demonstrates how to access the PRISMA data catalogue to search for archived 

data. The third video shows how to request new PRISMA acquisition in the 

PRISMA data portal. 

Hyperion 

The first imaging spectrometer that launched into space in 2000 was the Hyperion 

imaging spectrometer, a technology demonstrator aboard NASA’s Earth observing 

mission EO-1. Despite being planned as a one-year mission, the sensor was in 

operation until 2017 and data is available via the USGS Earth Explorer Portal. This 

portal provides access to a range of other remote sensing data and products in 

addition to Hyperion datasets. The USGS provides some helpful guidance videos 

(though not specifically on downloading Hyperion data): An EarthExplorer 

Introduction discussing the basics of using EarthExplorer or an EarthExplorer Search 

Criteria discussing the available search options. 

 

Airborne 

Right, airborne data are expensive to acquire and acquisitions are rare. Nevertheless, 

some projects are generous and you can download data for free! Find out how in the 

section below – or use it as a small reminder.  

https://prisma.asi.it/authenticationendpoint/login.do?client_id=HfvpCVmAk24rSdCB4E4xu5Vf3LUa&commonAuthCallerPath=%2Foauth2%2Fauthorize&forceAuth=false&nonce=ade7b9f6c26c6afaf2da261c53acca9a&passiveAuth=false&redirect_uri=http%3A%2F%2Fprisma.asi.it%2Fmissionselect%2F&response_type=code&scope=openid+email&state=5cc7c9822661cf0a12d464fd02e9af3d&tenantDomain=carbon.super&sessionDataKey=b87da509-1b0b-4a88-8d92-1fa479f00416&relyingParty=HfvpCVmAk24rSdCB4E4xu5Vf3LUa&type=oidc&sp=prs-user-Interfaces&isSaaSApp=false&authenticators=BasicAuthenticator:LOCAL
https://www.youtube.com/watch?v=7k5KIlgI7O0
https://www.youtube.com/watch?v=7EmP0mCYvq8
https://www.youtube.com/watch?v=GJVJW4K3iJs
https://earthexplorer.usgs.gov/
https://www.youtube.com/watch?v=eAmTxsg6ZYE
https://www.youtube.com/watch?v=eAmTxsg6ZYE
https://www.youtube.com/watch?v=CVsgjp9jRyA
https://www.youtube.com/watch?v=CVsgjp9jRyA
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AVIRIS-NG Campaign Portal 

AVIRIS-NG is an imaging spectrometer that measures 

reflected radiance at 5nm intervals in the VNIR-SWIR 

spectral range from 380-2500 nm. The sensor has already 

been flown in several airborne campaigns in many 

countries. The AVIRIS-NG Data Portal provides an overview of the campaign data 

and the possibility to download L1 and L2 data products. In addition, reflectance 

data of the ESA CHIME & SBG AVIRIS-Next Generation Europe 2021 campaign have 

been made available for download at the campaign website of ARES, the Airborne 

Research Facility for the Earth System at the University of Zurich.  

EnMAP Campaign Portal 

The EnMAP Campaign Portal provides access to airborne 

hyperspectral image data sets along with simulated 

EnMAP data that were generated using the EnMAP end-

to-end simulation tool (EeteS). In addition, associated in-

situ data from field and laboratory measurements are 

provided. The flight campaigns were carried out in the 

framework of the EnMAP preparatory science program to support method and 

application development in the prelaunch phase of the EnMAP satellite mission. A 

metadata portal has been set up to provide general information about all the 

campaigns and direct links to the datasets. The data is freely available to the scientific 

community under a Creative Commons License through the GFZ Data Services. 

Software 

With the increasing availability of hyperspectral data, options to visualize and process 

the data are increasing, too. Commercial options such as ENVI have been around for 

about two decades and are certainly comfortable to use. In addition, the capabilities 

of Geographic Information Systems (GIS) such as the free and open source QGIS 

software, are growing and you can easily display your data and perform simple 

analyses such as the calculation of spectral indices. QGIS plugins such as the EnMAP 

box allow for more complex hyperspectral analyses. If you like working with code, 

some helping hands provide assistance in getting started with hyperspectral analyses, 

e.g., using R or python. However, as not everyone is familiar with the use of code, in 

this course we’ll be working with the EnMAP Box. 

https://avirisng.jpl.nasa.gov/dataportal/
https://ares-observatory.ch/esa_chime_mission_2021/
https://www.enmap.org/data_tools/flights/
https://www.l3harrisgeospatial.com/Software-Technology/ENVI
https://qgis.org/en/site/
https://www.neonscience.org/resources/learning-hub/tutorials/hsi-hdf5-r
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EnMAP Box 

There are several software options that facilitate the 

visualization and analyses of hyperspectral data. One 

of these options is the EnMAP-Box, a free and open 

source python plugin for QGIS, specifically 

designed to process and visualize imaging 

spectroscopy data from the EnMAP mission, but 

also any other optical remote sensing data. The 

EnMAP-Box was developed as part of the EnMAP 

preparatory science program to facilitate advanced processing of high dimensional 

spectral remote sensing data and enhanced visualization as well as the exploration of 

multi-band remote sensing data and spectral libraries in a GIS environment. The plug-

in consists of a graphical user interface for data visualization and spectral library 

management, a set of advanced general and application-oriented algorithms, and a 

high-level application programming interface (EnMAP API). The EnMAP-Box can be 

started from QGIS or stand-alone and is registered in the QGIS plug-in repository. We 

will guide you through the installation, first steps and agricultural applications using 

the EnMAP Box in the next lesson. 

ARTMO 

A software package for running and inverting 

a suite of plant RTMs, both at the leaf and at 

the canopy level, is the in-house developed 

Automated Radiative Transfer Models 

Operator (ARTMO) Graphic User Interface 

(GUI): “ARTMO facilitates consistent and intuitive user interaction, thereby 

streamlining model setup, running, storing and spectra output plotting for any kind of 

optical sensor operating in the visible, near-infrared and shortwave infrared range 

(400-2500 nm). ARTMO also hosts the Atmospheric Look-up Generator (ALG) and the 

Decomposition and Analysis of Time Series software (DATimeS) as standalone 

software packages.” As the EnMAP-Box, ARTMO is available for free. 

  

https://enmap-box.readthedocs.io/en/latest/
https://artmotoolbox.com/
https://artmotoolbox.com/
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Quiz: Data and software resources 

Which of the variables below are secondary variables that cannot be inferred 

directly from imaging spectroscopy data? (single-choice) 

☐ EnMAP campaign portal 

☐ AVIRIS portal 

☐ ARES portal 

 

Spaceborne imaging spectroscopy data is currently freely available from the 

sensor: (multiple-choice) 

☐ PRISMA 

☐ EnMAP 

☐ Hyperion 

☐ SBG 

 

Spaceborne imaging spectroscopy data is currently freely available from the 

sensor: (multiple-choice) 

☐ Code, e.g. R or python 

☐ Some GIS software, e.g. the free and open source QGIS 

☐ Free QGIS plugins such as the EnMAP-Box 

☐ Specific imaging spectroscopy software such as ENVI 
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4.2 Methods 

There are a variety of methods for analyzing the high information content of 

imaging spectroscopy data,depending on the application and target variables. First of 

all, it is important that your data are properly pre-processed. And even if the data 

come processed, it might be helpful to understand the different pre-processing steps. 

How do you get from physically non-interpretable digital numbers originally acquired 

by the sensor to physical units that are transferable and comparable? Well, Charly 

explained the general process (including some considerations on data selection) in 

the basic MOOC. If you are already familiar with the topic of preprocessing, just skip 

the next video. 

Video: Basic-20: Hands-on training: Data preprocessing 

 

Video URL: https://youtu.be/drqFyMmyPI0 

In the basic MOOC, we differentiated between Classification and Quantification. 

Now, we focus on quantification using regression analysis and radiative transfer 

modelling (RTM). In the following video, Charly will give you a general overview of 

methods that are widely used in agricultural imaging spectroscopy. 

Video: Agri-06: Imaging Spectroscopy for Agricultural Applications - Regression 

Models 

 

Video URL: https://youtu.be/TeTylnM23XM 

  

https://youtu.be/drqFyMmyPI0
https://youtu.be/TeTylnM23XM
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In this course, we want to focus on hybrid methods as they combine the flexibility 

of parametric approaches with the physics encoded in machine learning algorithms. 

In the following video, Charly will be a bit more specific on the definition of “hybrid 

methods”, what they include and which models are frequently used: 

Video: Agri-07: Imaging Spectroscopy for Agricultural Applications - Hybrid Models 

 

Video URL: https://youtu.be/4hIngoVaL9Y 

VIDEO: Regression Models 

Hang on, what do Hybrid Methods combine? (single choice) 

☐ Digital and analogue techniques 

☐ Nonparametric methods and radiative transfer models 

☐ Parametric Methods and Process Models 

 

Can you recall a popular Parametric Method? (single choice) 

☐ Radiative Transfer Models 

☐ Machine Learning 

☐ Narrow band vegetation indices such as the NDVI 

https://youtu.be/4hIngoVaL9Y
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VIDEO: Hybrid Models 

The following vegetation variables are often estimated using RTMs. 

Can you sort them into biochemical and biophysical variables? 

yield, leaf area index, leaf chlorophyll content, crop canopy 

temperature, biomass, leaf nitrogen content, gross primary productivity 

 

 

 

 

 

We’ll be working with them later - Have a guess what lookup tables 

are (single choice) 

☐ A lookup table (LUT) is an array giving an output value for each of a 

range of index values. The use of LUTs can significantly increase 

processing time 

☐ A lookup table is a tool to validate the output of RTMs by manually 

comparing the results to values in a predefined table 

 

Biophysical variables 

 

 

 

Biochemical variables 
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Quiz: Methods 

What does the abbreviation “RTM” stand for in our course context? (single-

choice) 

☐ Release To Manufacturing 

☐ Radiative Transfer Model 

☐ Régie des Transport Métropolitains 

☐ Requirement Traceability Matrix 

Do you recognize popular RTMs in the selection below? (multiple-choice) 

☐ PROSPECT 

☐ SAIL 

☐ PROSAIL 

☐ PROPOSAL 

Can you match the correct terms? 

 

A Choose an element 

B Choose an element 

C Choose an element 

D Choose an element 

E Choose an element 

F Choose an element 
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4.3 Workflow 

Now, imagine you want to answer your own research questions using imaging 

spectroscopy data – what would the general workflow be? 

If you have participated in the basic MOOC ‘Beyond the Visible – Introduction to 

Hyperspectral Remote Sensing’ the following exercise will seem familiar. You are right, 

it is and you might have solved it before … you see, we think it is important to become 

familiar with agricultural applications in the context of an entire workflow, including 

final map product, preprocessing, choice of software, data acquisition etc. Oh, final 

map before preprocessing is the wrong order? Well, have a guess then and place the 

six different steps involved including some more concrete sub-steps (Step 2 and Step 

4) correctly!  

 

Interactive graph on the General Workflow 

Available under this LINK. 

 

Of course, the workflow shown is very abstract and simplified and you might 

experience situations where you must iteratively go back and make adjustments. 

Nevertheless, the exercise shows that the path to a final, qualitative map product 

https://eo-college.org/courses/beyond-the-visible-imaging-spectroscopy-for-agricultural-applications/lessons/4-methodological-aspects/topic/4-3-workflow/
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based on imaging spectroscopy data involves many steps whose precise definition 

requires intensive thought and consideration. 

While the formulation of the research question is up to you, we will get into more 

detail on the hybrid methods in the next lesson, including some very useful tips and 

initial practical experience. 

 

 

Do you want to share your pending research question with the MOOC community? 

Please use the discussion forum of this topic to do so! We are very keen to hear 

from you! 

  

Interactive Graphs

Remember: You need to be enrolled and logged in under EO College in order 

to be forwarded to the interactive Graphs. Figures of those are, however, 

incorporated in this offline version. For the best learning experience, we 

recommend to check out the graphs online. 

https://eo-college.org/forums/discussion/agri-4-3-workflow/
https://eo-college.org/forums/discussion/agri-4-3-workflow/
https://eo-college.org/
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Quiz: Workflow 

Which preprocessing steps should be applied to hyperspectral data? (multiple-

choice) 

☐ Atmospheric correction 

☐ Radiometric correction 

☐ Cosmetic correction 

☐ Geometric correction 

 

Why can it be useful to apply dimensionality reduction before or as part of 

actual image analysis? (multiple-choice) 

☐ Because it can speed-up processing and reduce computational costs 

☐ Because hyperspectral data are often highly redundant and carry 

highly inter-correlated information 

☐ Because redundant data introduce noise and may lead to suboptimal 

model performances 

☐ Because the hundreds of contiguous bands are so confusing 
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4.4 Resources ‘Methodological aspects’ 

In this section, we have assembled resources used for the creation of this lesson that 

we recommend you use for further reading as they provide a lot more detail on the 

different topics. Please remember that this selection is not a complete overview of all 

resources – if you think an important resource is missing, let us and your fellow 

students know (e.g., in the discussion forum). 

 

You can find most figures of this lecture in the HYPERedu slide collection, available on 

EO-College. 

How to cite: K. Berger, J. Verrelst, C. Atzberger, M. Weiss, S. Steinhauser, M. Wocher, 

S. Foerster, T. Kuester (2020). Retrieval approaches of vegetation traits from imaging 

spectroscopy data, HYPERedu, EnMAP education initiative, September 2020, LMU 

Munich. 

Available in the EO-College hyperspectral resources section: https://eo-

college.org/resource/retrieval-approaches-of-vegetation-traits-from-imaging-

spectroscopy-data/ 

Sources for further reading 

Topic 1: Data and software 

Spectral Index database https://www.indexdatabase.de/db/i.php 

EnMAP Data 

www.enmap.org 

https://eoweb.dlr.de (in the future) 

Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, 

A.; Rossner, G.; Chlebek, C.; Straif, C.; Fischer, S.; Schrader, S.; Storch, T.; Heiden, U.; Mueller, 

A.; Bachmann, M.; Mühle, H.; Müller, R.; Habermeyer, M.; Ohndorf, A.; Hill, J.; Buddenbaum, H.; 

Hostert, P.; Van der Linden, S.; Leitão, P.J.; Rabe, A.; Doerffer, R.; Krasemann, H.; Xi, H.; Mauser, 

W.; Hank, T.; Locherer, M.; Rast, M.; Staenz, K.; Sang, B. The EnMAP Spaceborne Imaging 

Spectroscopy Mission for Earth Observation. Remote Sens. 2015, 7, 8830-8857. 

https://doi.org/10.3390/rs70708830 

PRISMA Data 

http://prisma-i.it 

https://eo-college.org/forums/forum/beyond-the-visible/agricultural-applications/
https://eo-college.org/resource/retrieval-approaches-of-vegetation-traits-from-imaging-spectroscopy-data/
file:///C:/Users/kkoch/Desktop/HYPERedu/Agri%20Mini%20MOOC/eo-college.org
https://eo-college.org/resource/retrieval-approaches-of-vegetation-traits-from-imaging-spectroscopy-data/
https://eo-college.org/resource/retrieval-approaches-of-vegetation-traits-from-imaging-spectroscopy-data/
https://eo-college.org/resource/retrieval-approaches-of-vegetation-traits-from-imaging-spectroscopy-data/
https://www.indexdatabase.de/db/i.php
file://///mefe50/mefe_en3/Chris/HyperEDU/www.enmap.org
https://doi.org/10.3390/rs70708830
http://prisma-i.it/
https://eo-college.org/forums/forum/beyond-the-visible/agricultural-applications/
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https://prisma.asi.it 

R. Loizzo et al. (2018): Prisma: The Italian Hyperspectral Mission”. IGARSS 2018 – 2018 IEEE 

International Geoscience and Remote Sensing Symposium, pp. 175-178, doi: 

10.1109/IGARSS.2018.8518512. 

USGS Earth Explorer Portal (Hyperion) 

https://earthexplorer.usgs.gov/ 

An EarthExplorer Introduction discussing the basics of using EarthExplorer (by USGS): 

https://www.youtube.com/watch?v=eAmTxsg6ZYE 

An EarthExplorer Search Criteria discussing the available search options (by USGS): 

https://www.youtube.com/watch?v=CVsgjp9jRyA 

A tutorial on Hyperion (by NASA ARSET, 29:53 -37:30): 

https://www.youtube.com/watch?v=x7l6n7njVPo 

A recent webinar series on imaging spectroscopy (by NASA ARSET): 

https://appliedsciences.nasa.gov/join-mission/training/english/arset-hyperspectral-data-land-

and-coastal-systems 

AVIRIS-NG 

Overview of campaign data and download possibility for L1 and L2 data products: 

https://avirisng.jpl.nasa.gov/dataportal/ 

Data of the ESA CHIME & SBG AVIRIS-Next Generation Europe 2021 campaign available for 

download from https://ares-observatory.ch/esa_chime_mission_2021/ 

EnMAP flight campaign data 

EnMAP data simulated from airborne data (https://www.enmap.org/data_tools/simulated/) 

Overview of campaign data direct links to the dataset landing pages: 

https://www.enmap.org/data_tools/flights or, alternatively, search and data download via 

https://dataservices.gfz-potsdam.de/portal/?q=hyperspectral* 

Software 

General information on the EnMAP-Box, a free and open source python plugin for QGIS: 

https://www.enmap.org/data_tools/enmapbox/ 

Download, documentation and tutorials of and with the EnMAP-Box:  https://enmap-

box.readthedocs.io/ 

https://artmotoolbox.com/ 

Topic 2: Methods 

Baret, F., Buis, S., 2008. Estimating canopy characteristics from remote sensing observations: 

Review of methods and associated problems, Advances in land remote Sensing. Springer, 

Dordrecht, Netherlands, pp. 173-201. 

https://prisma.asi.it/
https://earthexplorer.usgs.gov/
https://www.youtube.com/watch?v=eAmTxsg6ZYE
https://www.youtube.com/watch?v=CVsgjp9jRyA
https://www.youtube.com/watch?v=x7l6n7njVPo
https://appliedsciences.nasa.gov/join-mission/training/english/arset-hyperspectral-data-land-and-coastal-systems
https://appliedsciences.nasa.gov/join-mission/training/english/arset-hyperspectral-data-land-and-coastal-systems
https://avirisng.jpl.nasa.gov/dataportal/
https://ares-observatory.ch/esa_chime_mission_2021/
https://www.enmap.org/data_tools/simulated/)
https://dataservices.gfz-potsdam.de/portal/?q=hyperspectral*
https://www.enmap.org/data_tools/enmapbox/
https://enmap-box.readthedocs.io/
https://enmap-box.readthedocs.io/
https://artmotoolbox.com/
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Berger, K., Atzberger, C., Danner, M., D’Urso, G., Mauser, W., Vuolo, F., Hank, T., 2018. Evaluation 

of the PROSAIL Model Capabilities for Future Hyperspectral Model Environments: A Review 

Study. Remote Sens. 10, 85. 

Jacquemoud, S., Verhoef, W., Baret, F., Bacour, C., Zarco-Tejada, P.J., Asner, G.P., François, C., 

Ustin, S.L., 2009. PROSPECT + SAIL models: A review of use for vegetation characterization. 

Remote Sens. Environ. 113, Supplement 1, S56-S66.    

Li, S., Song, W., Fang, L., Chen, Y., Ghamisi, P., Benediktsson, J., 2019. Deep Learning for 

Hyperspectral Image Classification: An Overview. IEEE Trans. Geosci. Remote Sens. PP, 1-20. 

Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., Johnson, B.A., 2019. Deep learning in remote sensing 

applications: A meta-analysis and review. Isprs J. Photogramm. 152, 166-177. 

Verrelst, J., Camps-Valls, G., Muñoz-Marí, J., Rivera, J.P., Veroustraete, F., Clevers, J.G.P.W., 

Moreno, J., 2015. Optical remote sensing and the retrieval of terrestrial vegetation bio-

geophysical properties – A review. Isprs J. Photogramm. 108, 273-290. 

Verrelst, J., Malenovský, Z., Van der Tol, C. et al. (2019): Quantifying Vegetation Biophysical 

Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods. Surveys in 

Geophysics. 40, 589–629. https://doi.org/10.1007/s10712-018-9478-y 

Weiss, M., Jacob, F., Duveiller, G., 2020. Remote sensing for agricultural applications: A meta-

review. Remote Sens. Environ. 236, 111402. 

Xue, J., Su, B., 2017. Significant Remote Sensing Vegetation Indices: A Review of Developments 

and Applications. Journal of Sensors 2017, 1353691. 

Topic 3: Workflow 

Bioucas-Dias, J.M., Plaza, A., Camps-Valls, G., Scheunders, P., Nasrabadi, N., Chanussot, J. 

(2013):  Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. 

Remote Sens. Mag 1(2), 6–36. https://doi.org/10.1109/MGRS.2013.2244672 

Ghamisi, P., Yokoya, N., Li, J., Liao, W., Liu, S., Plaza, J., Rasti, B. and Plaza, A. (2017): Advances in 

Hyperspectral Image and Signal Processing: A Comprehensive Overview of the State of the Art. 

IEEE Geoscience and Remote Sensing Magazine, vol. 5, no. 4, pp. 37-78, Dec. 2017, 

https://doi.org/10.1109/MGRS.2017.2762087 

Li, J., Plaza, A. (2016): Hyperspectral Image Processing. Methods and Approaches. In: 

Thenkabail, P.S. (Ed): Remotely Sensed Data Characterization, Classification and Accuracies. 

Taylor and Francis group. 

https://www.umbc.edu/rssipl/people/aplaza/Papers/BookChapters/2016.Handbook.Hypersp

ectral.pdf 

Lillesand T., Kiefer R.W. & J. Chipman (2008): Remote Sensing and Image Interpretation. 6th 

Edition, Wiley. 

Schowengerdt (2007): Remote Sensing: Models and Methods for Image Processing. 3rd 

Edition, Elsevier  

https://doi.org/10.1007/s10712-018-9478-y
https://doi.org/10.1109/MGRS.2013.2244672
https://www.umbc.edu/rssipl/people/aplaza/Papers/BookChapters/2016.Handbook.Hyperspectral.pdf
https://www.umbc.edu/rssipl/people/aplaza/Papers/BookChapters/2016.Handbook.Hyperspectral.pdf
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Quiz: Methodological aspects 

Where can you get additional information on EnMAP data? (multiple-choice) 

☐ By sending a fax to the German Aerospace Centre (DLR) 

☐ From https://www.enmap.org/ 

☐ In this courseCosmetic correction 

☐ From Guanter et al. 2015 

 

What does the “A” in “Aviris NG” stand for? (single-choice) 

☐ Average 

☐ Airborne 

☐ Advanced 

☐ Avenger 

 

Which bands does the GNDVI index use (if you are not sure, check the index 

database https://www.indexdatabase.de/db/i.php) (single-choice) 

☐ NIR and RED 

☐ NIR and GREEN 

☐ NIR, RED and GREEN 

☐ NIR, RED, GREEN and BLUE 

 

If you want to vizualise hyperspectral data, you can do so for FREE using … 

(multiple choice) 

☐ Code, e.g. R or python 

☐ Some GIS software, e.g. the free and open source QGIS 

☐ Free QGIS plugins such as the EnMAP-Box 

☐ Specific imaging spectroscopy software such as ENVI  

https://www.indexdatabase.de/db/i.php
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The two spectra below show a vegetation spectrum before and after atmospheric 

correct was applied. Click on the one without atmospheric correction? (single-

choice) 

☐  

☐  

Why is geometric correction important? (multiple-choice) 

☐ Because it generates surface reflectance that provides a fingerprint of 

surface materials 

☐ Because it transforms irregularly spaced image coordinates acquired in 

sensor geometry into regularly spaced pixels with a map projection 

☐ Because it involves compensation for spatial non-uniformities 

(keystone effect), orthorectification and detector co-registration 

☐ Because it involves compensation for spectral non-uniformities (smile 

effect) 

What are “hybrid models”? (single-choice) 

☐ They involve the visual interpretation of an image and can be exercised 

analogue 

☐ They combine radiative transfer modelling and machine learning 

☐ They combine non-parametric regression and machine learning 
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Radiative transfer modelling can be performed … (multiple-choice) 

☐ Unfortunately, only by buying expensive and highly specific software 

solutions 

☐ Using the EnMAP-Box 

☐ Only by developing your own code 

☐ Using ARTMO 

What is the benefit of combining machine learning and RTMs? (single-choice) 

☐ I don’t know, I’m just using it because it’s said to be state of the art 

☐ Combining the flexibility and scalability of ML while respecting the 

physics encoded in the RTM 

☐ Practical reasons as most software packages only offer them in 

combination 

☐ A tremendous increase in processing speed 

Can you match the correct terms? 

 

 

A Choose an element 

B Choose an element 

C Choose an element 

D Choose an element 

E Choose an element 

F Choose an element 
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05. Hands-On training 

Welcome to our third lesson! The following topics are “hands on”, meaning you can 

actively participate in the exercises that we designed specifically for this course! The 

software and data can be downloaded for free and we will guide you step by step. 

Installation of the EnMAP-Box and active participation in any tutorial are not 

compulsory to pass this MOOC, however, for the best learning result we strongly 

encourage you to use this opportunity to “get your hands dirty” during some expert-

guided hands-on training exercises! As before, Charly will explain the learning 

objectives of this – final – lesson in the video below. 

Video: Agri-08: Imaging Spectroscopy for Agricultural Applications - Lesson 05 Intro 

 

Video URL: https://youtu.be/D5r52IfnM3g 

 

 

Please feel free to point out further resources in the discussion forum. You can 

find the discussion forum at https://eo-college.org/forums/forum/beyond-the-

visible/agricultural-applications/ under each related topic. 

 

Let’s move on with the first topic of this lesson! 

  

https://youtu.be/D5r52IfnM3g
https://eo-college.org/forums/forum/beyond-the-visible/
https://eo-college.org/forums/forum/beyond-the-visible/agricultural-applications/
https://eo-college.org/forums/forum/beyond-the-visible/agricultural-applications/
https://eo-college.org/forums/forum/beyond-the-visible/agricultural-applications/
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5.1 Introduction to the EnMAP-Box 

As Charly just explained, we will be using the EnMAP Box “Agricultural Apps” to learn 

how to retrieve quantitative biophysical and agriculturally relevant information from 

hyperspectral data. In case you have the EnMAP Box already installed and are familiar 

with the visualization tools, you can skip the rest of this topic. For everyone else, we 

have produced the following two screencasts to provide an introduction to 

working with the EnMAP-Box. The first screencast explains the installation of the 

EnMAP-Box software and the second the different visualization tools. For detailed 

and up-to-date information on the EnMAP-Box please visit the documentation 

website, where you can also find a user manual as well as several application tutorials. 

Please refer to the installation website for information on the latest supported QGIS 

version. 

Installation 

Video: Basic-22: Hands-on training: EnMAP-Box Installation 

 

 

 

 

 

       Video URL: https://youtu.be/_SNbLmB8aCQ 

Data visualization 

Video: Basic-24: Hands-on training: EnMAP-Box Spectral Library 

 

 

 

 

 

       Video URL: https://youtu.be/qVoi0CoJheI  

https://enmap-box.readthedocs.io/en/latest/
https://enmap-box.readthedocs.io/en/latest/
https://enmap-box.readthedocs.io/en/latest/usr_section/usr_installation.html
https://enmap-box.readthedocs.io/en/latest/usr_section/usr_installation.html
https://youtu.be/_SNbLmB8aCQ
https://youtu.be/qVoi0CoJheI
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Quiz: Introduction to the EnMAP-Box 

In the EnMAP-Box, you can visualize the following data types (multiple-choice) 

☐ Raster data 

☐ Vector data 

☐ Spectral libraries 

 

The EnMAP-Box is a great tool for hyperspectral data visualization and 

analyses … (multiple-choice) 

☐ … as you can easily select which bands to combine in a RGB view of an 

image 

☐ … as image and vector data can be displayed together in the same 

“map view” panel 

☐ … as several “map view” panels can be spatially linked in side by side 

representations 

☐ … as spectral pixel information can be displayed as spectral profiles in 

a separate “spectral library” window 
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5.2 EnMAP-Box Agricultural Apps 

Okay, here we go. In the following screencasts, we will show you step by step how to 

get acquainted with the data and produce a training database, how to train a machine 

learning algorithm, retrieve quantitative information and lastly, how to validate your 

results. 

 

Get acquainted with the data and produce a synthetic training 

database 

Video: Agri-09: Get acquainted with the data and produce a synthetic training 

database 

 

Video URL: https://youtu.be/QIjv3mSaAYw 

Train a machine learning algorithm 

Video: Agri-10: Train a machine learning algorithm 

 

Video URL: https://youtu.be/nwssbxgjNK0 

  

For active participation, you can download the data here. 

https://youtu.be/QIjv3mSaAYw
https://youtu.be/nwssbxgjNK0
https://doi.org/10.5880/enmap.2022.001
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Retrieve quantitative information with a hybrid model 

Video: Agri-11: Retrieve quantitative information with a hybrid model 

 

Video URL: https://youtu.be/sTz87-OqYwg 

Validate your retrieval results with in-situ data 

Video: Agri-12: Validate your retrieval results with in-situ data 

 

Video URL: https://youtu.be/GMPeit4qRT4 

 

You might find that your results differ from Tobis. Don’t worry, that’s normal and we 

can explain why: On the one hand, this is due to the fact that while the training 

database (the LUT file) is compiled according to the same statistical criteria, the dice 

are rolled anew each time you run the tool and the resulting training database can be 

very different, despite identical parameterization. Another deviation can happen 

when training the model, because the ANN does not necessarily pick the same data 

out of the training dataset each time. And finally, numerical uncertainties can occur 

when inverting the ANN (though they should be rather small in comparison). 

  

https://youtu.be/sTz87-OqYwg
https://youtu.be/GMPeit4qRT4
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Quiz: EnMAP-Box Agricultural Apps 

In the exercise, we are working with a scene acquired by which sensor? (single-

choice) 

☐ AVIRIS 

☐ EnMAP 

☐ AVIRIS NG 

☐ PRISMA 

 

In the list of leaf model parameters below, there is one that you CANNOT set 

directly in the creation of your training data base BUT knowledge about this 

parameter might help in defining the other parameters more accurately. 

Which parameter is it? (single-choice) 

☐ Chlorophyll A + B (Cab) 

☐ Phenology 

☐ Dry Matter Content (Cm) 

☐ Water Content (Cw) 
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5.3 Discussion of accuracy and limitations 

In the previous exercise, we retrieved quantitative information from a hyperspectral 

image and validated our result using some in-situ measurements. But how accurate 

are the results? 

Well, there are several aspects to consider. For one, our ground reference data is not 

entirely “true” as some variables are highly variable in space and time and we only 

collected a very limited number of samples. Plus, despite our best efforts, the spatial 

scale in the field is different from air- or spaceborne resolution. Actually, this aspect 

of uncertainty is often neglected in studies dealing with the comparison of remotely 

measured and field sampled data: Some variables are traditionally measured in the 

field at the leaf level, while airborne or spaceborne sensors, especially when they scan 

the Earth’s surface at nadir view, observe the canopy as a whole. For example, 

biochemicals such as chlorophyll, nitrogen, anthocyanins, water etc. may occur in very 

different concentrations in the various parts of a plant (roots, stems, leaves, ears) and 

may also show vertical gradients (e.g. senescence starts near the ground and 

gradually approaches the top of the canopy). Unfortunately, many of the field 

instruments that are used to sample these variables are easily be applied to leaves, 

but are not suited to measure the canopy as a whole (e.g. the SPAD Chlorophyll 

meter). The hyperspectral instrument observing the canopy from above, in contrast, 

is not able to discern between the signals emerging from leaves stems and ears, but 

rather integrates across the top of the canopy according to its point spread function. 

Comparing the quantities measured on the ground at leaf level and maybe also in the 

middle level of the canopy with the quantities derived from the hyperspectral signal 

at top of canopy level will inevitably lead to poor agreement. 

So, how can we quantify uncertainty? Reichstein and colleagues (2019) said that 

“Models [themselves] should define their confidence and credibility” and Malenovsky 

et al. (2019) stated that “Validation of vegetation traits retrieved from optical remotely 

sensed data is an essential part of the estimation process indicating its fidelity.” In our 

exercise, we quantified physical uncertainties that indicate the deviations of 

retrieval products from “hypothetically true” values collected in situ during ground 

campaigns, as this is pretty straightforward. In cases where no in situ data are 

available – or ideally in addition to the physical uncertainties- you can quantify 

theoretical uncertainties, by using either spectral residuals or standard deviations, 
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OR the likelihood of values estimated in frame of statistical fuzzy approaches such as 

Bayesian methods. 

Uncertainty regarding in situ 

measurements of a validation site is 

related to the intrinsic natural 

variability of vegetation traits in 

space and time, and to the nature of 

the measurement method. The 

graph shows the hypothetical 

validation of imaging spectroscopy 

based estimates for five virtual 

validation sites. 

“The measurement and the 

estimation uncertainties, driven by 

actual precision and accuracy, are 

presented as a purple ellipse. In all 

cases, the uncertainty in ground-truth measurements is expected to be smaller than 

the uncertainty of a corresponding estimate. Hence, the measurement uncertainty is 

given by an ellipse on the minor axis and the uncertainty of an estimate is given by its 

major axis. Horizontal black arrows show a natural within-site variability of a given 

parameter, while grey zones illustrate variability captured in validation measurements 

collected at a given Validation site. The dashed line indicates the one-to-one line, i.e. 

the expected best fit between measured and estimated values.” For interpretation of 

the five validation sites, please refer to Malenovský et al (2019). 

 

Some hybrid methods incorporate the assessment of uncertainties. Below, is an 

example of the Gaussian Process (GP)-based retrieval of canopy nitrogen content as 

implemented in ARTMO. Nitrogen content is displayed in orange-green gradients, 

whereas the blue coloured maps indicate absolute uncertainties (=standard 

deviations), which are directly related to the magnitude of the mean estimates. 

Probability density plots of the crops can be used to check plausibility of the variable 

distribution (though they provide no real quantification of the absolute estimation 

accuracy of the respective variables, even if the model is very plausible the model 

Figure 23 The quantification of uncertainty. 

Berger et al. (2021): Retrieval approaches of vegetation traits 

from imaging spectroscopy data 
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decision can still be wrong). GPR is a fast and accurate nonlinear retrieval algorithm 

that can potentially be implemented for operational N monitoring applications. 

 

 

  

Figure 24 Gaussian processes for uncertainty estimates. 

Reprinted from Berger et al. 2020 with permission from Elsevier 
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Quiz: Discussion of accuracy and limitations 

How can we quantify uncertainties? (multiple-choice) 

☐ Physical uncertainties indicate the deviations of retrieval products from 

“hypothetically true” values collected in situ during ground campaigns 

☐ Physical uncertainties are used when no in situ data are available, e.g. 

via spectral residuals or standard deviations 

☐ Theoretical uncertainties indicate the deviations of retrieval products 

from “hypothetically true” values collected in situ during ground 

campaigns 

☐ Theoretical uncertainties are used when no in situ data are available, 

e.g. via spectral residuals or standard deviations 

 

Which colour gradient indicates the crop nitrogen content of the previously 

shown maps? (single-choice) 

☐ orange-green 

☐ shades of blue 

☐ black and white 
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5.4 Resources section ‘Hands-On training’ 

In this section, we have assembled resources used for the creation of this lesson that 

we recommend you use for further reading as they provide a lot more detail on the 

different topics. Please remember that this selection is not a complete overview of all 

resources – if you think an important resource is missing, let us and your fellow 

students know (e.g., in the discussion forum). 

 

You can find most figures of this lecture in the HYPERedu slide collection, available on 

EO-College. 

How to cite: K. Berger, J. Verrelst, C. Atzberger, M. Weiss, S. Steinhauser, M. Wocher, 

S. Foerster, T. Kuester (2020). Retrieval approaches of vegetation traits from imaging 

spectroscopy data, HYPERedu, EnMAP education initiative, September 2020, LMU 

Munich. 

Sources for further reading 

Topic 1: Introduction to the EnMAP-Box 

General information on the EnMAP-Box, a free and open source python plugin for QGIS: 

https://www.enmap.org/data_tools/enmapbox/ 

Download, documentation and tutorials of and with the EnMAP-Box: https://enmap-

box.readthedocs.io/ 

Topic 2: Introduction to the EnMAP-Box 

General information on the “Agricultural Apps” toolbox and guidance on how to apply the 

individual tool: https://enmap-box-lmu-vegetation-apps.readthedocs.io/en/latest/ 

Topic 3: Discussion of accuracy and limitations 

Berger, K., Verrelst, J., Féret, J.-B., Hank, T., Wocher, M., Mauser, W., Camp-Valls, G. (2020). 

Retrieval of aboveground crop nitrogen content with a hybrid machine learning method. 

International Journal of Applied Earth Observation and Geoinformation, 92. 

Cooper, G.F., Herskovits, E., 1992. A Bayesian method for the induction of probabilistic 

networks from data. Machine Learning 9, 309-347. 

Danner, M., Wocher, M., Berger, K., Mauser, W., and T. Hank (2018): Developing a Sandbox 

Environment for Prosail, Suitable for Education and Research, IGARSS 2018 – 2018 IEEE 

https://eo-college.org/forums/forum/beyond-the-visible/agricultural-applications/
https://eo-college.org/resource/retrieval-approaches-of-vegetation-traits-from-imaging-spectroscopy-data/
https://eo-college.org/
https://www.enmap.org/data_tools/enmapbox/
https://enmap-box.readthedocs.io/
https://enmap-box.readthedocs.io/
https://enmap-box-lmu-vegetation-apps.readthedocs.io/en/latest/
https://eo-college.org/forums/forum/beyond-the-visible/agricultural-applications/
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International Geoscience and Remote Sensing Symposium, pp. 783-786, 

doi: https://ieeexplore.ieee.org/document/8519378 

Danner, M., Wocher, M., Berger, K., Mauser, W. & Hank, T. (2021): Efficient training of machine 

learning regression algorithms to quantify biophysical & biochemical traits of agricultural 

crops. ISPRS Journal of Photogrammetry and Remote Sensing. Volume 173, pp. 278-296, ISSN 

0924-2716, https://doi.org/10.1016/j.isprsjprs.2021.01.017. 

Hank, T., Berger, K., Wocher, M., Danner, M. and W. Mauser (2021): Introducing the Potential of 

the EnMAP-Box for Agricultural Applications Using Desis and Prisma Data, 2021 IEEE 

International Geoscience and Remote Sensing Symposium IGARSS,  pp. 467-470, 

doi: https://ieeexplore.ieee.org/document/9554729 

Malenovský, Z., Homolová, L., Lukeš, P., Buddenbaum, H., Verrelst, J., Alonso, L., Schaepman, 

M.E., Lauret, N., Gastellu-Etchegorry, J.-P., 2019. Variability and Uncertainty Challenges in 

Scaling Imaging Spectroscopy Retrievals and Validations from Leaves Up to Vegetation 

Canopies. Surv. Geophys. 40, 631-656. 

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., Prabhat, M., 

2019. Deep learning and process understanding for data-driven Earth system science. Nature 

566, 195. 

Rivera, J., Verrelst, J., Leonenko, G., Moreno, J., 2013. Multiple Cost Functions and Regularization 

Options for Improved Retrieval of Leaf Chlorophyll Content and LAI through Inversion of the 

PROSAIL Model. Remote Sens. 5, 3280-3304. 

Verrelst, J., Rivera, J.P., Moreno, J., Camps-Valls, G., 2013. Gaussian processes uncertainty 

estimates in experimental Sentinel-2 LAI and leaf chlorophyll content retrieval. Isprs J. 

Photogramm. 86, 157-167. 

Wocher, M., Danner, M., Berger, K., Mauser, W. & Hank, T. (2018): Physically-Based Retrieval of 

Canopy Equivalent Water Thickness Using Hyperspectral Data. Remote Sensing 10 (12), 

1924; https://doi.org/10.3390/rs10121924. 

Wocher, M., Berger, K., Danner, M., Mauser, W. & Hank, T. (2020): RTM-based dynamic 

absorption integrals for the retrieval of biochemical vegetation traits. International Journal of 

Applied Earth Observations and Geoinformation, Volume 93, December 2020, 

102219, https://doi.org/10.1016/j.jag.2020.102219 

 

  

https://ieeexplore.ieee.org/document/8519378
https://doi.org/10.1016/j.isprsjprs.2021.01.017
https://ieeexplore.ieee.org/document/9554729
https://doi.org/10.3390/rs10121924
https://doi.org/10.1016/j.jag.2020.102219
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Quiz: Hands-on Training 

To generate a training data base that will be large and diverse enough to 

satisfy the needs of our machine learning algorithm, we … (single-choice) 

☐ … we first need to create Endmembers to populate the training data 

base with combinations of reflectance signatures and corresponding 

model parameters 

☐ … we first need to create a Look-Up-Table to populate the training data 

base with combinations of reflectance signatures and corresponding 

model parameters 

☐ … we first need to create a Look-Up-Table to establish nonlinear 

relationships between our field and image data 

 

The training data base that we created in the hands-on exercise contained 

reflectance signatures of … (multiple-choice) 

☐ Vegetation 

☐ Soil 

☐ Water 

☐ Air 

 

Before training our machine learning algorithm, we first perform a Principal 

Component Analysis or PCA. Why? (multiple-choice) 

☐ To reduce the dimensionality of our data 

☐ To add some bands containing additional information 

☐ Because the “Agricultural Apps” cannot handle more than 10 

reflectance spectra 

☐ Because some machine learners do not perform very well when they 

are flooded with the large dimensionality of original hyperspectral data 
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In our example, the machine learning algorithm consisted of an artificial 

neural network (ANN). What was the ANN trained on? (single-choice) 

☐ Training data that we collected in the field (as shown in Lesson 4) 

☐ Endmembers (EM) that were collected from the image 

☐ A Look Up Table (LUT) 

☐ ANNs don’t need to be trained 

 

To retrieve quantitative information from our hyperspectral image …? (single-

choice) 

☐ … we run our trained model (the ANN) in inverse mode 

☐ … we run our trained model (the ANN) in forward mode 

☐ … we perform a classification 

 

In the Canopy Model Parameters settings, you need to set several angles. 

What do they correspond to? (single-choice) 

Observation Zenith 

Angle 

Choose an element 

Sun Zenith Angle Choose an element 

Relative azimuth 

Angle 

Choose an element 
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What are advantages of hybrid models? (multiple-choice) 

☐ They combine the flexibility and scalability of machine learning while 

respecting the physics encoded in Radiative Transfer Models 

☐ They establish nonlinear relationships between any kind of data 

without the incorporation of physical rules 

☐ They achieve high accuracy results even if no field data is available for 

training 

☐ They are the fastest and easiest method to get information from 

hyperspectral data 

 

How many field samples do you need to run a hybrid model for 100 ha of 

farmland? (single-choice) 

☐ Actually 0 but some would be handy for the validation of results 

☐ No more than 10 

☐ Between 10 and 100 

☐ 100, as a minimum of 1 sample per hectare is required to run a hybrid 

model 

 

Which aspect of uncertainty is often neglected in the comparison of remotely 

measured and field sampled data? (multiple-choice) 

☐ Some variables are traditionally measured in the field at leaf level, while 

airborne or spaceborne sensors observe the canopy as a whole 

☐ This applies to parameter such as the leaf area index (LAI) 

☐ The uncertainty in hybrid model output is minor so that it actually CAN 

be neglected 

☐ This applies to biochemicals such as chlorophyll, nitrogen and 

anthocyanins 
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In cases where no in situ data are available – or ideally in addition to the 

physical uncertainties – you can quantify theoretical uncertainties, by … 

(multiple-choice) 

☐ … drawing lines and ellipses in your scatter plots 

☐ … using spectral residuals or standard deviations 

☐ … using the likelihood of values estimated in frame of statistical fuzzy 

approaches such as Bayesian methods 

☐ … discussing the model parameterization 
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6 Goodbye! 

Well done! You’ve learned a lot about imaging spectroscopy for agricultural 

applications. Let’s move on with the final survey! The survey helps us to improve 

this course as well as future ones and will take you about 2 minutes. Afterwards it will 

get serious…we want to test your knowledge with the Final Quiz! 

 

6.1 Final User Survey 

Thank you for taking the time to answer our final survey! We are aiming to 

regularly review your answers and update the course accordingly. You can 

access the final user survey under the following Link. 

 

If you have any further suggestions, please let us know vie email or through the 

discussion forum. 

 

6.2 Final Exam 

Here we go, below you will find the final quiz. If you’ve payed close attention in the 

previous lessons, you should be able to answer them easily. But even if you don’t 

(answer easily), you have unlimited attempts to pass so don’t get nervous. 

Oh … and don’t forget to say goodbye and check out our incredible team! 

 

  

https://eo-college.org/courses/beyond-the-visible-imaging-spectroscopy-for-agricultural-applications/lessons/6-goodbye/topic/6-1-final-user-survey/
https://eo-college.org/forums/forum/beyond-the-visible/agricultural-applications/


6 Goodbye  MOOC – Introduction to  

 Hyperspectral Remote Sensing  
 

 

95 
 

Quiz: Final Exam 

With decreasing LAI, the spectrum of green vegetation … (multiple-choice) 

☐ … becomes increasingly flat (less pronounced absorption features) 

☐ … remains the same except for changes in the VIS region 

☐ … becomes increasingly more similar to a soil spectrum 

Dry vegetation and bare soil can be distinguished best based on … (single-

choice) 

☐ … the cellulose absorption feature around 2200 nm 

☐ … the cellulose absorption feature between 700 and 1300 nm 

☐ … their water content 

Assign the correct surface material to its respective spectral signature 

 

 
 

A Choose an element 

 

B Choose an element 

 

C Choose an element 

 

D Choose an element 
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With respect to vegetation traits, what are “primary variables”?… (multiple-

choice) 

☐ Variables that are most important for agricultural applications 

☐ Variables that are directly involved in radiative transfer mechanisms 

☐ Variables that are not directly related to the radiative transfer 

mechanisms 

☐ Variables that can be inferred directly from imaging spectroscopy data 

 

What is the difference between leaf and canopy traits? (multiple-choice) 

☐ Leaf level traits can only be assessed in the laboratory while canopy 

level traits can be assessed in the field 

☐ Leaf level traits describe the biochemical and morphological properties 

of leaves while canopy level traits mainly describe the structural 

properties of a vegetation stand 

☐ While the majority of leaf level traits rely on parametric regressions, 

canopy level traits are often retrieved using machine learning 

approaches 

☐ In fact, there is not really a difference 

 

Which of the variables below are secondary variables that cannot be inferred 

directly from imaging spectroscopy data? (multiple-choice) 

☐ Nitrogen content 

☐ Phenology 

☐ Pigment content 

☐ Irrigation needs 
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If you want to vizualise hyperspectral data, you can do so for FREE using … 

(multiple-choice) 

☐ Code, e.g. R or python 

☐ Some GIS software, e.g. the free and open source QGIS 

☐ Free QGIS plugins such as the EnMAP-Box 

☐ Specific imaging spectroscopy software such as ENVI 

 

What are “hybrid models”? (single-choice) 

☐ They involve the visual interpretation of an image and can be exercised 

analogue 

☐ They combine radiative transfer modelling and machine learning 

☐ They combine non-parametric regression and machine learning 

 

What is the benefit of combining machine learning and RTMs? (single-choice) 

☐ I don’t know, I’m just using it because it’s said to be state of the art 

☐ Combining the flexibility and scalability of ML while respecting the 

physics encoded in the RTM 

☐ Practical reasons as most software packages only offer them in 

combination 

☐ A tremendous increase in processing speed 
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To generate a training data base that will be large and diverse enough to 

satisfy the needs of our machine learning algorithm, we … (single-choice) 

☐ … we first need to create Endmembers to populate the training data 

base with combinations of reflectance signatures and corresponding 

model parameters 

☐ … we first need to create a Look-Up-Table to populate the training data 

base with combinations of reflectance signatures and corresponding 

model parameters 

☐ … we first need to create a Look-Up-Table to establish nonlinear 

relationships between our field and image data 

 

Before training our machine learning algorithm, we first perform a Principal 

Component Analysis or PCA. Why? (multiple-choice) 

☐ To reduce the dimensionality of our data 

☐ To add some bands containing additional information 

☐ Because the “Agricultural Apps” cannot handle more than 10 

reflectance spectra 

☐ Because some machine learners do not perform very well when they 

are flooded with the large dimensionality of original hyperspectral data 

To retrieve quantitative information from our hyperspectral image … (single-

choice) 

☐ … we run our trained model (the ANN) in inverse mode 

☐ … we run our trained model (the ANN) in forward mode 

☐ … we perform a classification 
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The results retrieved with the methodology we showed in lesson 5 can differ 

every time you run the model. Why? (multiple-choice) 

☐ This can happen when training the model, because the ANN does not 

necessarily pick the same samples out of the training dataset each 

time.  

☐ This can be due to numerical uncertainties that can occur when 

inverting the ANN. 

☐ This can be due to the fact that the dice are rolled anew each time you 

create a lookup table (.lut file) and the resulting training database can 

be very different, despite identical parameterization. 

☐ This can happen when you don’t pay attention during training database 

and/or model parameterization. 

How can uncertainty be quantified in cases where no in situ data are 

available? (multiple-choice) 

☐ By discussing the model parameterization 

☐ By using spectral residuals or standard deviations 

☐ Without ground reference data the uncertainty of maps from remote 

sensing data can only be described qualitatively 

☐ By using the likelihood of values estimated in frame of statistical fuzzy 

approaches such as Bayesian methods 

Why do we call in situ measurements “ground reference” but not “ground 

truth”? (multiple-choice) 

☐ Actually, we do call them ground truth as they represent perfectly 

correct values 

☐ Because ground reference data is never entirely “true”, mistakes can 

happen during measurement and analyses 

☐ Because ground reference data is never entirely “true” as some 

variables are highly variable in space and time 

☐ Because we want to promote the use of remote sensing products and 

the term “ground truth” makes the maps appear less reliable  
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6.3 Goodbye! 

Thank you for completing the entire MOOC on hyperspectral remote sensing for 

agricultural applications! We hope you had as much fun in participating as we did in 

creating this course (and a comparably steep learning curve) and that you will become 

an active member of the hyperspectral community! You know, the data is complex 

and we need a lot of experts … 

 

 

If you still want to learn more, check out the resource sections of the lessons where 

we have tried to link a lot of extra material and further reading. If you want to practice, 

download EnMAP data, install the EnMAP-Box (if you haven’t done so yet) and check 

out the other tutorials. Also, stay tuned for our follow-up MOOCs on specific 

applications. 
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